Massive fermions interacting via a harmonic oscillator in the presence of a minimal length uncertainty relation

被引:7
作者
Falaye, B. J. [1 ,2 ]
Dong, Shi-Hai [3 ]
Oyewumi, K. J. [4 ]
Haiwi, K. F. [5 ]
Ikhdair, S. M. [5 ,6 ]
机构
[1] UPALM, ESFM, Inst Politecn Nacl, Mexico City 07738, DF, Mexico
[2] Fed Univ Lafia, Div Appl Theoret Phys, Dept Phys, Lafia, Nigeria
[3] UPALM, CIDETEC, Inst Politecn Nacl, Mexico City 07700, DF, Mexico
[4] Univ Ilorin, Theoret Phys Sect, Dept Phys, Ilorin, Nigeria
[5] An Najah Natl Univ, Dept Phys, Fac Sci, Nablus, West Bank, Palestine
[6] Near East Univ, Dept Elect Engn, Northern Cyprus 10, Mersin, Turkey
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS E | 2015年 / 24卷 / 11期
关键词
Dirac equation; generalized uncertainty relation; formula method; LADDER OPERATORS; QUANTUM-GRAVITY; PRINCIPLE; DIRAC; EQUATION;
D O I
10.1142/S0218301315500871
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We derive the relativistic energy spectrum for the modified Dirac equation by adding a harmonic oscillator potential where the coordinates and momenta are assumed to obey the commutation relation [(x) over cap, (p) over cap] = ih (1 + eta p(2)). In the nonrelativistic (NR) limit, our results are in agreement with the ones obtained previously. Furthermore, the extension to the construction of creation and annihilation operators for the harmonic oscillators with minimal length uncertainty relation is presented. Finally, we show that the commutation relation of the SU(1, 1) similar to SO(2, 1) algebra is satisfied by the operators (L) over cap (+/-) and (L) over cap (z).
引用
收藏
页数:11
相关论文
共 40 条
[1]   Complete Analytical Solutions of the Mie-Type Potentials in N-Dimensions [J].
Agboola, D. .
ACTA PHYSICA POLONICA A, 2011, 120 (03) :371-377
[2]   Dirac and Klein-Gordon equations with equal scalar and vector potentials [J].
Alhaidari, AD ;
Bahlouli, H ;
Al-Hasan, A .
PHYSICS LETTERS A, 2006, 349 (1-4) :87-97
[3]   Proposal for testing quantum gravity in the lab [J].
Ali, Ahmed Farag ;
Das, Saurya ;
Vagenas, Elias C. .
PHYSICAL REVIEW D, 2011, 84 (04)
[4]   Testable scenario for relativity with minimum length [J].
Amelino-Camelia, G .
PHYSICS LETTERS B, 2001, 510 (1-4) :255-263
[5]   Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[6]   Quantum uncertainty in doubly special relativity -: art. no. 065015 [J].
Cortés, JL ;
Gamboa, J .
PHYSICAL REVIEW D, 2005, 71 (06) :1-4
[7]   Harmonic oscillator with minimal length uncertainty relations and ladder operators [J].
Dadic, I ;
Jonke, L ;
Meljanac, S .
PHYSICAL REVIEW D, 2003, 67 (08)
[8]   Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations [J].
Dey, Sanjib ;
Fring, Andreas .
PHYSICAL REVIEW D, 2012, 86 (06)
[9]  
Dong S. H., 2007, FACTORIZATION METHOD, P289
[10]   Ladder operators for the modified Poschl-Teller potential [J].
Dong, SH ;
Lemus, R .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 86 (03) :265-272