Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma

被引:16
|
作者
Li, Chao [1 ,2 ,3 ]
Wang, Shuo [3 ,4 ]
Serra, Angela [5 ,6 ,7 ]
Torheim, Turid [8 ,9 ]
Yan, Jiun-Lin [1 ,10 ,11 ]
Boonzaier, Natalie R. [1 ,12 ]
Huang, Yuan [3 ]
Matys, Tomasz [4 ]
McLean, Mary A. [4 ,8 ]
Markowetz, Florian [8 ,9 ]
Price, Stephen J. [1 ,13 ]
机构
[1] Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge Brain Tumour Imaging Lab, Box 167 Cambridge Biomed Campus, Cambridge CB2 0QQ, England
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Neurosurg, Shanghai Peoples Hosp 1,Sch Med, Shanghai, Peoples R China
[3] Univ Cambridge, Ctr Math Imaging Healthcare, Dept Pure Math & Math Stat, Cambridge, England
[4] Univ Cambridge, Dept Radiol, Cambridge, England
[5] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[6] Inst Biosci & Med Technol BioMediTech, Tampere, Finland
[7] Univ Salerno, DISA MIS, NeuRoNe Lab, Fisciano, SA, Italy
[8] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[9] CRUK&EPSRC Canc Imaging Ctr Cambridge & Mancheste, Cambridge, England
[10] Chang Gung Mem Hosp, Dept Neurosurg, Keelung, Taiwan
[11] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[12] UCL, Dev Imaging & Biophys Sect, Great Ormond St Inst Child Hlth, London, England
[13] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge, England
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
Glioblastoma; Magnetic resonance imaging; Machine learning; Survival analysis; Prognosis; GLIOMAS RESPONSE ASSESSMENT; HIGH-GRADE GLIOMAS; PROGNOSTIC VALUE; FLAIR VOLUME; BRAIN-TUMORS; DIFFUSION; PERFUSION; SURVIVAL;
D O I
10.1007/s00330-018-5984-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Integrating multiple imaging modalities is crucial for MRI data interpretation. The purpose of this study is to determine whether a previously proposed multi-view approach can effectively integrate the histogram features from multi-parametric MRI and whether the selected features can offer incremental prognostic values over clinical variables. Methods Eighty newly-diagnosed glioblastoma patients underwent surgery and chemoradiotherapy. Histogram features of diffusion and perfusion imaging were extracted from contrast-enhancing (CE) and non-enhancing (NE) regions independently. An unsupervised patient clustering was performed by the multi-view approach. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the relevance of patient clustering to survival. The metabolic signatures of patient clusters were compared using multi-voxel spectroscopy analysis. The prognostic values of histogram features were evaluated by survival and ROC curve analyses. Results Two patient clusters were generated, consisting of 53 and 27 patients respectively. Cluster 2 demonstrated better overall survival (OS) (p = 0.007) and progression-free survival (PFS) (p < 0.001) than Cluster 1. Cluster 2 displayed lower N-acetylaspartate/creatine ratio in NE region (p = 0.040). A higher mean value of anisotropic diffusion in NE region was associated with worse OS (hazard ratio [HR] = 1.40, p = 0.020) and PFS (HR = 1.36, p = 0.031). The seven features selected by this approach showed significantly incremental value in predicting 12-month OS (p = 0.020) and PFS (p = 0.022). Conclusions The multi-view clustering method can provide an effective integration of multi-parametric MRI. The histogram features selected may be used as potential prognostic markers.
引用
收藏
页码:4718 / 4729
页数:12
相关论文
共 42 条
  • [21] Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE): Detecting Prostate Cancer on Multi-Parametric MRI
    Viswanath, Satish
    Bloch, B. Nicolas
    Chappelow, Jonathan
    Patel, Pratik
    Rofsky, Neil
    Lenkinski, Robert
    Genega, Elisabeth
    Madabhushi, Anant
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [22] Multi-parametric Classification of Traumatic Brain Injury Patients Using Automatic Analysis of Quantitative MRI Scans
    Aribisala, Benjamin S.
    Cowie, Christopher J. A.
    He, Jiabao
    Wood, Joshua
    Mendelow, A. David
    Mitchell, Patrick
    Blamire, Andrew M.
    MEDICAL IMAGING AND AUGMENTED REALITY, 2010, 6326 : 51 - 59
  • [23] Whole-tumor histogram analysis of multi-parametric MRI for differentiating brain metastases histological subtypes in lung cancers: relationship with the Ki-67 proliferation index
    Zhang, Bin
    Zhou, Fengyu
    Zhou, Qing
    Xue, Caiqiang
    Ke, Xiaoai
    Zhang, Peng
    Han, Tao
    Deng, Liangna
    Jing, Mengyuan
    Zhou, Junlin
    NEUROSURGICAL REVIEW, 2023, 46 (01)
  • [24] Whole-tumor histogram analysis of multi-parametric MRI for differentiating brain metastases histological subtypes in lung cancers: relationship with the Ki-67 proliferation index
    Bin Zhang
    Fengyu Zhou
    Qing Zhou
    Caiqiang Xue
    Xiaoai Ke
    Peng Zhang
    Tao Han
    Liangna Deng
    Mengyuan Jing
    Junlin Zhou
    Neurosurgical Review, 46
  • [25] Radio-anatomical evaluation of clinical and radiomic profile of multi-parametric magnetic resonance imaging of de novo glioblastoma multiforme
    Ahmed, H. Shafeeq
    Devaraj, Trupti
    Singhvi, Maanini
    Dasan, T. Arul
    Ranganath, Priya
    JOURNAL OF THE EGYPTIAN NATIONAL CANCER INSTITUTE, 2024, 36 (01)
  • [26] Multi-parametric hyperpolarized 13C/1H imaging reveals Warburg-related metabolic dysfunction and associated regional heterogeneity in high-grade human gliomas
    Autry, Adam W.
    Vaziri, Sana
    LaFontaine, Marisa
    Gordon, Jeremy W.
    Chen, Hsin-Yu
    Kim, Yaewon
    Villanueva-Meyer, Javier E.
    Molinaro, Annette
    Clarke, Jennifer L.
    Bush, Nancy Ann Oberheim
    Xu, Duan
    Lupo, Janine M.
    Larson, Peder E. Z.
    Vigneron, Daniel B.
    Chang, Susan M.
    Li, Yan
    NEUROIMAGE-CLINICAL, 2023, 39
  • [27] A Multi-parametric MRI-Based Radiomics Signature and a Practical ML Model for Stratifying Glioblastoma Patients Based on Survival Toward Precision Oncology
    Osman, Alexander F., I
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13
  • [28] Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model
    Xia, Wei
    Hu, Bin
    Li, Haiqing
    Shi, Wei
    Tang, Ying
    Yu, Yang
    Geng, Chen
    Wu, Qiuwen
    Yang, Liqin
    Yu, Zekuan
    Geng, Daoying
    Li, Yuxin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (03) : 880 - 887
  • [29] Ectopic fat is associated with cardiac remodeling-A comprehensive assessment of regional fat depots in type 2 diabetes using multi-parametric MRI
    Edin, Carl
    Ekstedt, Mattias
    Scheffel, Tobias
    Karlsson, Markus
    Swahn, Eva
    Ostgren, Carl Johan
    Engvall, Jan
    Ebbers, Tino
    Leinhard, Olof Dahlqvist
    Lundberg, Peter
    Carlhall, Carl-Johan
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [30] Towards tumour hypoxia imaging: Incorporating relative oxygen extraction fraction mapping of prostate with multi-parametric quantitative MRI on a 1.5T MR-linac
    Mesny, Emmanuel
    Leporq, Benjamin
    Chapet, Olivier
    Beuf, Olivier
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2024, 68 (02) : 171 - 176