Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma

被引:16
|
作者
Li, Chao [1 ,2 ,3 ]
Wang, Shuo [3 ,4 ]
Serra, Angela [5 ,6 ,7 ]
Torheim, Turid [8 ,9 ]
Yan, Jiun-Lin [1 ,10 ,11 ]
Boonzaier, Natalie R. [1 ,12 ]
Huang, Yuan [3 ]
Matys, Tomasz [4 ]
McLean, Mary A. [4 ,8 ]
Markowetz, Florian [8 ,9 ]
Price, Stephen J. [1 ,13 ]
机构
[1] Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge Brain Tumour Imaging Lab, Box 167 Cambridge Biomed Campus, Cambridge CB2 0QQ, England
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Neurosurg, Shanghai Peoples Hosp 1,Sch Med, Shanghai, Peoples R China
[3] Univ Cambridge, Ctr Math Imaging Healthcare, Dept Pure Math & Math Stat, Cambridge, England
[4] Univ Cambridge, Dept Radiol, Cambridge, England
[5] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[6] Inst Biosci & Med Technol BioMediTech, Tampere, Finland
[7] Univ Salerno, DISA MIS, NeuRoNe Lab, Fisciano, SA, Italy
[8] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[9] CRUK&EPSRC Canc Imaging Ctr Cambridge & Mancheste, Cambridge, England
[10] Chang Gung Mem Hosp, Dept Neurosurg, Keelung, Taiwan
[11] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[12] UCL, Dev Imaging & Biophys Sect, Great Ormond St Inst Child Hlth, London, England
[13] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge, England
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
Glioblastoma; Magnetic resonance imaging; Machine learning; Survival analysis; Prognosis; GLIOMAS RESPONSE ASSESSMENT; HIGH-GRADE GLIOMAS; PROGNOSTIC VALUE; FLAIR VOLUME; BRAIN-TUMORS; DIFFUSION; PERFUSION; SURVIVAL;
D O I
10.1007/s00330-018-5984-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Integrating multiple imaging modalities is crucial for MRI data interpretation. The purpose of this study is to determine whether a previously proposed multi-view approach can effectively integrate the histogram features from multi-parametric MRI and whether the selected features can offer incremental prognostic values over clinical variables. Methods Eighty newly-diagnosed glioblastoma patients underwent surgery and chemoradiotherapy. Histogram features of diffusion and perfusion imaging were extracted from contrast-enhancing (CE) and non-enhancing (NE) regions independently. An unsupervised patient clustering was performed by the multi-view approach. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the relevance of patient clustering to survival. The metabolic signatures of patient clusters were compared using multi-voxel spectroscopy analysis. The prognostic values of histogram features were evaluated by survival and ROC curve analyses. Results Two patient clusters were generated, consisting of 53 and 27 patients respectively. Cluster 2 demonstrated better overall survival (OS) (p = 0.007) and progression-free survival (PFS) (p < 0.001) than Cluster 1. Cluster 2 displayed lower N-acetylaspartate/creatine ratio in NE region (p = 0.040). A higher mean value of anisotropic diffusion in NE region was associated with worse OS (hazard ratio [HR] = 1.40, p = 0.020) and PFS (HR = 1.36, p = 0.031). The seven features selected by this approach showed significantly incremental value in predicting 12-month OS (p = 0.020) and PFS (p = 0.022). Conclusions The multi-view clustering method can provide an effective integration of multi-parametric MRI. The histogram features selected may be used as potential prognostic markers.
引用
收藏
页码:4718 / 4729
页数:12
相关论文
共 42 条
  • [1] Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma
    Chao Li
    Shuo Wang
    Angela Serra
    Turid Torheim
    Jiun-Lin Yan
    Natalie R. Boonzaier
    Yuan Huang
    Tomasz Matys
    Mary A. McLean
    Florian Markowetz
    Stephen J. Price
    European Radiology, 2019, 29 : 4718 - 4729
  • [2] Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features
    Zhang, Xin
    Yan, Lin-Feng
    Hu, Yu-Chuan
    Li, Gang
    Yang, Yang
    Han, Yu
    Sun, Ying-Zhi
    Liu, Zhi-Cheng
    Tian, Qiang
    Han, Zi-Yang
    Liu, Le-De
    Hu, Bin-Quan
    Qiu, Zi-Yu
    Wang, Wen
    Cui, Guang-Bin
    ONCOTARGET, 2017, 8 (29) : 47816 - 47830
  • [3] Prediction of Glioblastoma Multiform Response to Bevacizumab Treatment Using Multi-Parametric MRI
    Najafi, Mohammad
    Soltanian-Zadeh, Hamid
    Jafari-Khouzani, Kourosh
    Scarpace, Lisa
    Mikkelsen, Tom
    PLOS ONE, 2012, 7 (01):
  • [4] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Lundemann, Michael
    af Rosenschold, Per Munck
    Muhic, Aida
    Larsen, Vibeke A.
    Poulsen, Hans S.
    Engelholm, Svend-Aage
    Andersen, Flemming L.
    Kjaer, Andreas
    Larsson, Henrik B. W.
    Law, Ian
    Hansen, Adam E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (03) : 603 - 613
  • [5] Treatment-wise Glioblastoma Survival Inference with Multi-parametric Preoperative MRI
    Liu, Xiaofeng
    Shusharina, Nadya
    Shih, Helen A.
    Kuo, C. -C. Jay
    El Fakhri, Georges
    Woo, Jonghye
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [6] Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging
    Yiming Li
    Yuchao Liang
    Zhiyan Sun
    Kaibin Xu
    Xing Fan
    Shaowu Li
    Zhong Zhang
    Tao Jiang
    Xing Liu
    Yinyan Wang
    Neuroradiology, 2019, 61 : 1229 - 1237
  • [7] Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging
    Li, Yiming
    Liang, Yuchao
    Sun, Zhiyan
    Xu, Kaibin
    Fan, Xing
    Li, Shaowu
    Zhang, Zhong
    Jiang, Tao
    Liu, Xing
    Wang, Yinyan
    NEURORADIOLOGY, 2019, 61 (11) : 1229 - 1237
  • [8] Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI
    Kim, Yikyung
    Cho, Hwan-ho
    Kim, Sung Tae
    Park, Hyunjin
    Nam, Dohyun
    Kong, Doo-Sik
    NEURORADIOLOGY, 2018, 60 (12) : 1297 - 1305
  • [9] Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI
    Yikyung Kim
    Hwan-ho Cho
    Sung Tae Kim
    Hyunjin Park
    Dohyun Nam
    Doo-Sik Kong
    Neuroradiology, 2018, 60 : 1297 - 1305
  • [10] A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma
    Lausch, Anthony
    Yeung, Timothy Pok-Chi
    Chen, Jeff
    Law, Elton
    Wang, Yong
    Urbini, Benedetta
    Donelli, Filippo
    Manco, Luigi
    Fainardi, Enrico
    Lee, Ting-Yim
    Wong, Eugene
    MEDICAL PHYSICS, 2017, 44 (11) : 6074 - 6084