Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias

被引:43
作者
Attard, Catherine R. M. [1 ]
Beheregaray, Luciano B. [1 ]
Moller, Luciana M. [1 ]
机构
[1] Flinders Univ S Australia, Coll Sci & Engn, Mol Ecol Lab, Adelaide, SA, Australia
基金
澳大利亚研究理事会;
关键词
double-digest restriction site-associated DNA; low coverage; next-generation sequencing; pedigree; population genomics; relationships; PAIRWISE RELATEDNESS; GENETIC DIVERSITY; PARENTAGE ASSIGNMENT; SOCIAL-STRUCTURE; BLUE WHALES; SNP; CONSERVATION; MARKERS; MICROSATELLITE; GENOMICS;
D O I
10.1111/1755-0998.12739
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There has been remarkably little attention to using the high resolution provided by genotyping-by-sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward-biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping-by-sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation-based approach used here can be easily implemented by others on their own genotyping-by-sequencing data sets to confirm the most appropriate and powerful estimator for their data.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 74 条
[1]   Relatedness Mapping and Tracts of Relatedness for Genome-Wide Data in the Presence of Linkage Disequilibrium [J].
Albrechtsen, Anders ;
Korneliussen, Thorfinn Sand ;
Moltke, Ida ;
Hansen, Thomas van Overseem ;
Nielsen, Finn Cilius ;
Nielsen, Rasmus .
GENETIC EPIDEMIOLOGY, 2009, 33 (03) :266-274
[2]   Genomics and the future of conservation genetics [J].
Allendorf, Fred W. ;
Hohenlohe, Paul A. ;
Luikart, Gordon .
NATURE REVIEWS GENETICS, 2010, 11 (10) :697-709
[3]   A novel holistic framework for genetic-based captive-breeding and reintroduction programs [J].
Attard, C. R. M. ;
Moller, L. M. ;
Sasaki, M. ;
Hammer, M. P. ;
Bice, C. M. ;
Brauer, C. J. ;
Carvalho, D. C. ;
Harris, J. O. ;
Beheregaray, L. B. .
CONSERVATION BIOLOGY, 2016, 30 (05) :1060-1069
[4]   From conservation genetics to conservation genomics: a genome-wide assessment of blue whales (Balaenoptera musculus) in Australian feeding aggregations [J].
Attard, Catherine R. M. ;
Beheregaray, Luciano B. ;
Sandoval-Castillo, Jonathan ;
Jenner, K. Curt S. ;
Gill, Peter C. ;
Jenner, Micheline-Nicole M. ;
Morrice, Margaret G. ;
Moller, Luciana M. .
ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (01)
[5]   Multi-generational evaluation of genetic diversity and parentage in captive southern pygmy perch (Nannoperca australis) [J].
Attard, Catherine R. M. ;
Brauer, Chris J. ;
Van Zoelen, Jacob D. ;
Sasaki, Minami ;
Hammer, Michael P. ;
Morrison, Leslie ;
Harris, James O. ;
Moller, Luciana M. ;
Beheregaray, Luciano B. .
CONSERVATION GENETICS, 2016, 17 (06) :1469-1473
[6]   Towards population-level conservation in the critically endangered Antarctic blue whale: the number and distribution of their populations [J].
Attard, Catherine R. M. ;
Beheregaray, Luciano B. ;
Moeller, Luciana M. .
SCIENTIFIC REPORTS, 2016, 6
[7]   Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts [J].
Attard, Catherine R. M. ;
Beheregaray, Luciano B. ;
Jenner, K. Curt S. ;
Gill, Peter C. ;
Jenner, Micheline-Nicole M. ;
Morrice, Margaret G. ;
Teske, Peter R. ;
Moeller, Luciana M. .
BIOLOGY LETTERS, 2015, 11 (05)
[8]   Hybridization of Southern Hemisphere blue whale subspecies and a sympatric area off Antarctica: impacts of whaling or climate change? [J].
Attard, Catherine R. M. ;
Beheregaray, Luciano B. ;
Jenner, K. Curt S. ;
Gill, Peter C. ;
Jenner, Micheline-Nicole ;
Morrice, Margaret G. ;
Robertson, Kelly M. ;
Moeller, Luciana M. .
MOLECULAR ECOLOGY, 2012, 21 (23) :5715-5727
[9]   Genetic diversity and structure of blue whales (Balaenoptera musculus) in Australian feeding aggregations [J].
Attard, Catherine R. M. ;
Beheregaray, Luciano B. ;
Jenner, Curt ;
Gill, Peter ;
Jenner, Micheline ;
Morrice, Margaret ;
Bannister, John ;
LeDuc, Rick ;
Moeller, Luciana .
CONSERVATION GENETICS, 2010, 11 (06) :2437-2441
[10]   Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin [J].
Brauer, Chris J. ;
Hammer, Michael P. ;
Beheregaray, Luciano B. .
MOLECULAR ECOLOGY, 2016, 25 (20) :5093-5113