Suborbits of subspaces of type (m, k) under finite singular general linear groups

被引:11
作者
Wang, Kaishun [1 ,2 ]
Guo, Jun [3 ]
Li, Fenggao [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R China
[3] Langfang Teachers Coll, Math & Inf Coll, Langfang 065000, Peoples R China
[4] Hunan Inst Sci & Technol, Dept Math, Yueyang 414006, Hunan, Peoples R China
关键词
Singular general linear group; Suborbit; Orbital; Association scheme; ISOTROPIC SUBSPACES;
D O I
10.1016/j.laa.2009.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose F(q)(n+l) denotes the (n + l)-dimensional vector space over a finite field F(q) and GL(n+l,n)(F(q)) denotes the corresponding singular general linear group. All the subspaces of type (m, k) form an orbit under GL(n+l,n)(Fq), denoted by M(m,k: n + l, n). Let A be the set of all the orbitals of (GL(n+l,n)(F(q)), M(m, k: n + l, n)). Then (m (m, k: n + l, n), A) is a symmetric association scheme. In this paper, we determine all the orbitals and the rank of (GL(n+1,n)(F(q)), M(m, k: n + l, n)), calculate the length of each suborbit. Finally, we compute all the intersection numbers of the symmetric association scheme (m (m, k: n + l, n), A), where k = 1 or k = l - 1. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1360 / 1366
页数:7
相关论文
共 12 条
[1]  
Bannai Eiichi, 1984, Algebraic Combinatorics I: Association Schemes
[2]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[3]   Association schemes based on maximal isotropic subspaces in singular classical spaces [J].
Guo, Jun ;
Wang, Kaishun ;
Li, Fenggao .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) :747-755
[4]   Suborbits of m-dimensional totally isotropic subspaces under finite singular classical groups [J].
Guo, Jun ;
Wang, Kaishun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :2063-2069
[5]   Association schemes based on isotropic subspaces, Part 1 [J].
Rieck, MQ .
DISCRETE MATHEMATICS, 2005, 298 (1-3) :301-320
[6]  
Wan Z., 1966, STUDIES FINITE GEOME
[7]  
Wan Z. X., 2002, GEOMETRY CLASSICAL G
[8]  
WANG K, 2009, EUR J COMBIN
[9]  
Wang Y., 1993, ACTA MATH SINICA, V36, P163
[10]  
Wang Yang-xian, 1980, Acta Mathematicae Applacatae Sinica, V3, P97