Toeplitz Operators on Generalized Bergman Spaces

被引:4
作者
Chailuek, Kamthorn [1 ]
Hall, Brian C. [2 ]
机构
[1] Prince Songkla Univ, Dept Math, Hat Yai 90112, Songkhla, Thailand
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
Bergman space; Toeplitz operator; quantization; holomorphic Sobolev space; Berezin transform; HARMONIC-ANALYSIS; KAHLER-MANIFOLDS; BESOV-SPACES; QUANTIZATION; DOMAINS; TRANSFORM;
D O I
10.1007/s00020-009-1734-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the weighted Bergman spaces HL(2)(B(d), mu(lambda)), where we set d(mu lambda) (z) = c(lambda)(1-vertical bar z vertical bar(2))(lambda) d tau(z), with tau being the hyperbolic volume measure. These spaces are nonzero if and only if lambda > d. For 0 < lambda <= d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be de. ned as bounded operators or as a Hilbert-Schmidt operators on the generalized Bergman spaces.
引用
收藏
页码:53 / 77
页数:25
相关论文
共 33 条
[1]   Heat kernel and green function estimates on noncompact symmetric spaces [J].
Anker, JP ;
Ji, L .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (06) :1035-1091
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], 1994, Mathematical Surveys and Monographs, DOI DOI 10.1090/SURV/039
[4]  
ARAZY J, 1992, LECT NOTES PURE APPL, V136, P9
[5]   Homogeneous multiplication operators on bounded symmetric domains [J].
Arazy, J ;
Zhang, GK .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (01) :44-66
[6]  
Berezin F. A., 1974, USSR IZV, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[7]  
BEREZIN F. A., 1975, Math. USSR Izv., V9, P341
[8]   TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS [J].
BORDEMANN, M ;
MEINRENKEN, E ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :281-296
[9]   LEGENDRIAN DISTRIBUTIONS WITH APPLICATIONS TO RELATIVE POINCARE-SERIES [J].
BORTHWICK, D ;
PAUL, T ;
URIBE, A .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :359-402
[10]   NONPERTURBATIVE DEFORMATION QUANTIZATION OF CARTAN DOMAINS [J].
BORTHWICK, D ;
LESNIEWSKI, A ;
UPMEIER, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 113 (01) :153-176