Molecular Simulation of Pervaporation of a Lennard-Jones Mixture Using a Crystalline Membrane

被引:1
作者
Klinov, A., V [1 ]
Anashkin, I. P. [1 ]
Razinov, A., I [1 ]
Minibaeva, L. R. [1 ]
机构
[1] Kazan Natl Res Technol Univ, Kazan 420015, Tatarstan, Russia
基金
俄罗斯基础研究基金会;
关键词
membrane separation; pervaporation; molecular dynamics; diffusion; DYNAMICS SIMULATION; WATER TRANSPORT; GAS SEPARATION; PALLADIUM FOIL; DIFFUSION; NONEQUILIBRIUM; THICKNESS; GRADIENT; GROMACS; FLUIDS;
D O I
10.1134/S0040579519040201
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Numeric simulation of the pervaporation process is carried out using molecular dynamics. Various conditions of the separation of an ideal binary Lennard-Jones mixture using a crystalline membrane are considered. Components of separated mixtures differ in regards to the energy of interaction with molecules of the membrane. As a result of simulation, fields of concentrations and densities along the cell, as well as flux values of components, are obtained. In addition, coefficients of the diffusion of components in the membrane are computed. It is shown that the correspondence of numeric simulation data to macroscopic mass transfer equations are observed in all cases. It can be concluded that the behavior of molecules in a nonequilibrium system with a scale of several dozens of molecule diameters corresponds to transfer equations of linear nonequilibrium thermodynamics. Results of numeric simulation show the selectivity of a membrane in regard to the component with a larger interaction energy. It is shown that molecular simulation is able to predict the main characteristics of membrane separation (fluxes, selectivity, adsorption, and diffusion coefficients).
引用
收藏
页码:472 / 486
页数:15
相关论文
共 36 条
[21]   Modeling CO2 Transport and Sorption in Carbon Slit Pores [J].
Kirchofer, Abby ;
Firouzi, Mahnaz ;
Psarras, Peter ;
Wilcox, Jennifer .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (38) :21018-21028
[22]   Molecular Dynamics Simulation of Pervaporation of an Ethanol-Water Mixture on a Hybrid Silicon Oxide Membrane [J].
Klinov, A. V. ;
Anashkin, I. P. ;
Akberov, R. R. .
HIGH TEMPERATURE, 2018, 56 (01) :70-76
[23]   SELECTIVITY AS A FUNCTION OF MEMBRANE THICKNESS - GAS SEPARATION AND PERVAPORATION [J].
KOOPS, GH ;
NOLTEN, JAM ;
MULDER, MHV ;
SMOLDERS, CA .
JOURNAL OF APPLIED POLYMER SCIENCE, 1994, 53 (12) :1639-1652
[24]   Diffusion in porous crystalline materials [J].
Krishna, Rajamani .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (08) :3099-3118
[25]   Computer simulation of diffusion within and through membranes using nonequilibrium molecular dynamics [J].
MacElroy, JMD .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2000, 17 (02) :129-142
[26]  
Medvedev O.O., 2004, DIFFUSION COEFFICIEN
[27]   Transport coefficients of the Lennard-Jones model fluid. II Self-diffusion [J].
Meier, K ;
Laesecke, A ;
Kabelac, S .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (19) :9526-9535
[28]   Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations [J].
Oulebsir, Fouad ;
Vermorel, Romain ;
Galliero, Guillaume .
LANGMUIR, 2018, 34 (02) :561-571
[29]   GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit [J].
Pronk, Sander ;
Pall, Szilard ;
Schulz, Roland ;
Larsson, Per ;
Bjelkmar, Par ;
Apostolov, Rossen ;
Shirts, Michael R. ;
Smith, Jeremy C. ;
Kasson, Peter M. ;
van der Spoel, David ;
Hess, Berk ;
Lindahl, Erik .
BIOINFORMATICS, 2013, 29 (07) :845-854
[30]   Pressure-driven molecular dynamics simulations of water transport through a hydrophilic nanochannel [J].
Richard, Renou ;
Anthony, Szymczyk ;
Ghoufi, Aziz .
MOLECULAR PHYSICS, 2016, 114 (18) :2655-2663