Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO2 nanorod arrays by enhancing the ultraviolet light conversion efficiency

被引:11
作者
Wu, Tong [1 ]
Chen, Changlong [1 ]
Wei, Yuling [2 ]
Lu, Ranran [1 ]
Wang, Leshuang [1 ]
Jiang, Xuchuan [1 ]
机构
[1] Univ Jinan, Key Lab Chem Sensing & Anal Univ Shandong, Sch Chem & Chem Engn, Inst Smart Mat & Engn, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, 3501 Daxue Rd, Jinan 250353, Shandong, Peoples R China
关键词
NANOWIRE ARRAYS; PHOTOELECTROCATALYTIC DEGRADATION; SOLVOTHERMAL SYNTHESIS; BIVO4; ANATASE; PHOTOOXIDATION; REDUCTION; TI3+;
D O I
10.1039/c9dt01994d
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Fluorine and tin co-doped rutile TiO2 nanorod arrays are grown on fluorine-doped tin oxide substrates by a hydrothermal process and are used as photoanodes to perform photoelectrochemical water oxidation. Fluorine and tin co-doping synergistically enhances the ultraviolet light conversion efficiency of the resulting TiO2, which enables its photocurrent density of photoelectrochemical water oxidation to be more than four times that of the undoped samples. Such improvement in photoelectrochemical performance is attributed to changes in the electronic structure of the rutile TiO2 due to fluorine and tin co-doping. It is found that introducing tin into the matrix of rutile TiO2 can improve the charge separation efficiency because of the enhanced migration of photogenerated electrons from the conduction band of TiO2 to that of SnO2 that occurs at local sites, while fluorine doping can greatly reduce the recombination of the photogenerated electron-hole pairs due to the presence of the Ti3+ state that is produced to compensate for the charge difference between F- ions and O2- ions. It is envisaged that the fluorine and tin co-doped TiO2 nanorod arrays described will provide valuable platforms for wide photocatalytic applications that are not merely limited to photoelectrochemical water oxidation.
引用
收藏
页码:12096 / 12104
页数:9
相关论文
共 47 条
[1]   Molecular water-oxidation catalysts for photoelectrochemical cells [J].
Brimblecombe, Robin ;
Dismukes, G. Charles ;
Swiegers, Gerhard F. ;
Spiccia, Leone .
DALTON TRANSACTIONS, 2009, (43) :9374-9384
[2]   Synergistic Effect of Si Doping and Heat Treatments Enhances the Photoelectrochemical Water Oxidation Performance of TiO2 Nanorod Arrays [J].
Chen, Changlong ;
Wei, Yuling ;
Yuan, Guangzheng ;
Liu, Qinglong ;
Lu, Ranran ;
Huang, Xing ;
Cao, Yi ;
Zhu, Peihua .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (31)
[3]   Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation [J].
Chen, Changlong ;
Moir, Jonathon ;
Soheilnia, Navid ;
Mahler, Benoit ;
Hoch, Laura ;
Liao, Kristine ;
Hoepfner, Veronika ;
O'Brien, Paul ;
Qian, Chenxi ;
He, Le ;
Ozin, Geoffrey A. .
NANOSCALE, 2015, 7 (08) :3683-3693
[4]   Atomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis [J].
Cui, Chunhua ;
Heggen, Marc ;
Zabka, Wolf-Dietrich ;
Cui, Wei ;
Osterwalder, Jurg ;
Probst, Benjamin ;
Alberto, Roger .
NATURE COMMUNICATIONS, 2017, 8
[5]   Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger [J].
Dotan, Hen ;
Sivula, Kevin ;
Graetzel, Michael ;
Rothschild, Avner ;
Warren, Scott C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :958-964
[6]   Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells [J].
Duan, Yandong ;
Fu, Nianqing ;
Liu, Qiuping ;
Fang, Yanyan ;
Zhou, Xiaowen ;
Zhang, Jingbo ;
Lin, Yuan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8888-8893
[7]   Sn modification of TiO2 anatase and rutile type phases: 2-Propanol photo-oxidation under UV and visible light [J].
Fernanda Galvez-Lopez, Maria ;
Munoz-Batista, Mario J. ;
Guadalupe Alvarado-Beltran, Clemente ;
Luis Almaral-Sanchez, Jorge ;
Bachiller-Baeza, Belen ;
Kubacka, Anna ;
Fernandez-Garcia, Marcos .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 228 :130-141
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]
[10]   Splitting water with rust: hematite photoelectrochemistry [J].
Hamann, Thomas W. .
DALTON TRANSACTIONS, 2012, 41 (26) :7830-7834