Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology

被引:59
作者
Otalora, Sebastian [1 ,2 ]
Atzori, Manfredo [1 ]
Andrearczyk, Vincent [1 ]
Khan, Amjad [1 ,3 ]
Mueller, Henning [1 ,4 ]
机构
[1] HES SO Univ Appl Sci & Arts Western Switzerland, Inst Informat Syst, Sierre, Switzerland
[2] Univ Geneva, Comp Sci Ctr CUI, Geneva, Switzerland
[3] Univ Bern, Inst Pathol, Bern, Switzerland
[4] Univ Geneva, Med Fac, Geneva, Switzerland
基金
欧盟地平线“2020”;
关键词
staining normalization; adversarial neural networks; digital pathology; color augmentation; color normalization; domain shift; COLOR NORMALIZATION; IMAGES;
D O I
10.3389/fbioe.2019.00198
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
One of the main obstacles for the implementation of deep convolutional neural networks (DCNNs) in the clinical pathology workflow is their low capability to overcome variability in slide preparation and scanner configuration, that leads to changes in tissue appearance. Some of these variations may not be not included in the training data, which means that the models have a risk to not generalize well. Addressing such variations and evaluating them in reproducible scenarios allows understanding of when the models generalize better, which is crucial for performance improvements and better DCNN models. Staining normalization techniques (often based on color deconvolution and deep learning) and color augmentation approaches have shown improvements in the generalization of the classification tasks for several tissue types. Domain-invariant training of DCNN's is also a promising technique to address the problem of training a single model for different domains, since it includes the source domain information to guide the training toward domain-invariant features, achieving state-of-the-art results in classification tasks. In this article, deep domain adaptation in convolutional networks (DANN) is applied to computational pathology and compared with widely used staining normalization and color augmentation methods in two challenging classification tasks. The classification tasks rely on two openly accessible datasets, targeting Gleason grading in prostate cancer, and mitosis classification in breast tissue. The benchmark of the different techniques and their combination in two DCNN architectures allows us to assess the generalization abilities and advantages of each method in the considered classification tasks. The code for reproducing our experiments and preprocessing the data is publicly available(1). Quantitative and qualitative results show that the use of DANN helps model generalization to external datasets. The combination of several techniques to manage color heterogeneity suggests that several methods together, such as color augmentation methods with DANN training, can generalize even further. The results do not show a single best technique among the considered methods, even when combining them. However, color augmentation and DANN training obtain most often the best results (alone or combined with color normalization and color augmentation). The statistical significance of the results and the embeddings visualizations provide useful insights to design DCNN that generalizes to unseen staining appearances. Furthermore, in this work, we release for the first time code for DANN evaluation in open access datasets for computational pathology. This work opens the possibility for further research on using DANN models together with techniques that can overcome the tissue preparation differences across datasets to tackle limited generalization.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Digital pathology: current status and future perspectives [J].
Al-Janabi, Shaimaa ;
Huisman, Andre ;
Van Diest, Paul J. .
HISTOPATHOLOGY, 2012, 61 (01) :1-9
[2]  
[Anonymous], 2019, ARXIV190206543
[3]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[4]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[5]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[6]   Stain Specific Standardization of Whole-Slide Histopathological Images [J].
Bejnordi, Babak Ehteshami ;
Litjens, Geert ;
Timofeeva, Nadya ;
Otte-Holler, Irene ;
Homeyer, Andre ;
Karssemeijer, Nico ;
van der Laak, Jeroen A. W. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) :404-415
[7]  
Ben-David Shai, 2007, NEURIPS
[8]   Adversarial Stain Transfer for Histopathology Image Analysis [J].
BenTaieb, Aicha ;
Hamarneh, Ghassan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) :792-802
[9]   Context-Based Normalization of Histological Stains Using Deep Convolutional Features [J].
Bug, D. ;
Schneider, S. ;
Grote, A. ;
Oswald, E. ;
Feuerhake, F. ;
Schueler, J. ;
Merhof, D. .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 :135-142
[10]  
Ciompi F, 2017, I S BIOMED IMAGING, P160, DOI 10.1109/ISBI.2017.7950492