MINIMUM VOLUME CUSPED HYPERBOLIC THREE-MANIFOLDS

被引:75
|
作者
Gabai, David [1 ]
Meyerhoff, Robert [2 ]
Milley, Peter [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Univ Melbourne, Dept Math & Stat, Melbourne, Vic, Australia
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
D O I
10.1090/S0894-0347-09-00639-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1157 / 1215
页数:59
相关论文
共 50 条
  • [1] Closed minimal surfaces in cusped hyperbolic three-manifolds
    Huang, Zheng
    Wang, Biao
    GEOMETRIAE DEDICATA, 2017, 189 (01) : 17 - 37
  • [2] Closed minimal surfaces in cusped hyperbolic three-manifolds
    Zheng Huang
    Biao Wang
    Geometriae Dedicata, 2017, 189 : 17 - 37
  • [3] The orientable cusped hyperbolic 3-manifolds of minimum volume
    Chun Cao
    G. Robert Meyerhoff
    Inventiones mathematicae, 2001, 146 : 451 - 478
  • [4] The orientable cusped hyperbolic 3-manifolds of minimum volume
    Cao, C
    Meyerhoff, GR
    INVENTIONES MATHEMATICAE, 2001, 146 (03) : 451 - 478
  • [5] On the volume of Anti-de Sitter maximal globally hyperbolic three-manifolds
    Bonsante, Francesco
    Seppi, Andrea
    Tamburelli, Andrea
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) : 1106 - 1160
  • [6] Tight contact structures on hyperbolic three-manifolds
    Arikan, M. Firat
    Secgin, Merve
    TOPOLOGY AND ITS APPLICATIONS, 2017, 231 : 345 - 352
  • [7] On the volume of Anti-de Sitter maximal globally hyperbolic three-manifolds
    Francesco Bonsante
    Andrea Seppi
    Andrea Tamburelli
    Geometric and Functional Analysis, 2017, 27 : 1106 - 1160
  • [8] Asymptotics of analytic torsion for hyperbolic three-manifolds
    Raimbault, Jean .
    COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (03) : 459 - 531
  • [9] SOME HYPERBOLIC THREE-MANIFOLDS THAT BOUND GEOMETRICALLY
    Kolpakov, Alexander
    Martelli, Bruno
    Tschantz, Steven
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4103 - 4111
  • [10] Homology cobordism and the geometry of hyperbolic three-manifolds
    Lin, Francesco
    ADVANCES IN MATHEMATICS, 2025, 462