PARAMETER ESTIMATION FOR MACROSCOPIC PEDESTRIAN DYNAMICS MODELS FROM MICROSCOPIC DATA

被引:33
作者
Gomes, Susana N. [1 ]
Stuart, Andrew M. [2 ]
Wolfram, Marie-Therese [1 ,3 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[3] Austrian Acad Sci, RICAM, A-4040 Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
macroscopic pedestrian models; generalized McKean-Vlasov equations; parameter estimation; optimization-based and Bayesian inversion; SIMPLEX-METHOD; FLOW; CONVERGENCE;
D O I
10.1137/18M1215980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a framework for parameter estimation in macroscopic pedestrian models using individual trajectories-microscopic data. We consider a unidirectional flow of pedestrians in a corridor and assume that the velocity decreases with the average density according to the fundamental diagram. Our model is formed from a coupling between a density dependent stochastic differential equation and a nonlinear partial differential equation for the density, and is hence of McKean-Vlasov type. We discuss identifiability of the parameters appearing in the fundamental diagram from trajectories of individuals, and we introduce optimization and Bayesian methods to perform the identification. We analyze the performance of the developed methodologies in various situations, such as for different in- and outflow conditions, for varying numbers of individual trajectories, and for differing channel geometries.
引用
收藏
页码:1475 / 1500
页数:26
相关论文
共 43 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]  
Apte A, 2008, TELLUS A, V60, P336, DOI [10.1111/j.1600-0870.2007.00295.x, 10.1111/J.1600-0870.2007.00295.X]
[3]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[4]   The emergence of macroscopic interactions between intersecting pedestrian streams [J].
Bode, Nikolai W. F. ;
Chraibi, Mohcine ;
Holl, Stefan .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2019, 119 :197-210
[5]   Automatic Extraction of Pedestrian Trajectories from Video Recordings [J].
Boltes, Maik ;
Seyfried, Armin ;
Steffen, Bernhard ;
Schadschneider, Andreas .
PEDESTRIAN AND EVACUATION DYNAMICS 2008, 2010, :43-+
[6]   Flow characteristics in a crowded transport model [J].
Burger, Martin ;
Pietschmann, Jan-Frederik .
NONLINEARITY, 2016, 29 (11) :3528-3550
[7]   COMPARISON OF PEDESTRIAN FUNDAMENTAL DIAGRAM ACROSS CULTURES [J].
Chattaraj, Ujjal ;
Seyfried, Armin ;
Chakroborty, Partha .
ADVANCES IN COMPLEX SYSTEMS, 2009, 12 (03) :393-405
[8]   NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J].
Colombo, Rinaldo M. ;
Lecureux-Mercier, Magali .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) :177-196
[9]  
Conn A. R., 2009, Introduction to Derivative-Free Optimization, MOS-SIAM_Series_on_Optimization, DOI DOI 10.1137/1.9780898718768
[10]   Fluctuations around mean walking behaviors in diluted pedestrian flows [J].
Corbetta, Alessandro ;
Lee, Chung-min ;
Benzi, Roberto ;
Muntean, Adrian ;
Toschi, Federico .
PHYSICAL REVIEW E, 2017, 95 (03)