Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate

被引:87
作者
Pereira, Brian [1 ]
Li, Zheng-Jun [1 ,2 ]
De Mey, Marjan [1 ,3 ]
Lim, Chin Giaw [1 ,5 ]
Zhang, Haoran [1 ,6 ]
Hoeltgen, Claude [1 ,4 ]
Stephanopoulos, Gregory [1 ]
机构
[1] MIT, Dept Chem Engn, Room 56-469,77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Key Lab Bioproc, Beijing 100029, Peoples R China
[3] Univ Ghent, Ctr Ind Biotechnol & Biocatalysis, Dept Biochem & Microbial Technol, B-9000 Ghent, Belgium
[4] ETH, Inst Chem & Bioengn, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[5] Manus Biosynth, Cambridge, MA 02138 USA
[6] Rutgers State Univ, New Brunswick, NJ 08901 USA
基金
中国国家自然科学基金;
关键词
Ethylene glycol; Glycolate; Renewable; Metabolic engineering; Xylose; Hemicellulose; D-TAGATOSE; 3-EPIMERASE; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; XYLOSE METABOLISM; CORYNEBACTERIUM-GLUTAMICUM; PSEUDOMONAS SP; L-RHAMNOSE; E; COLI; PATHWAY; OPTIMIZATION;
D O I
10.1016/j.ymben.2015.12.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The development of lignocellulose as a sustainable resource for the production of fuels and chemicals will rely on technology capable of converting the raw materials into useful compounds; some such transformations can be achieved by biological processes employing engineered microorganisms. Towards the goal of valorizing the hemicellulose fraction of lignocellulose, we designed and validated a set of pathways that enable efficient utilization of pentoses for the biosynthesis of notable two-carbon products. These pathways were incorporated into Escherichia coli, and engineered strains produced ethylene glycol from various pentoses, including simultaneously from D-xylose and L-arabinose; one strain achieved the greatest reported titer of ethylene glycol, 40 g/L, from D-xylose at a yield of 0.35 g/g. The strategy was then extended to another compound, glycolate. Using D-xylose as the substrate, an engineered strain produced 40 g/L glycolate at a yield of 0.63 g/g, which is the greatest reported yield to date.,0 (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 38 条
[1]   Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli [J].
Ajikumar, Parayil Kumaran ;
Xiao, Wen-Hai ;
Tyo, Keith E. J. ;
Wang, Yong ;
Simeon, Fritz ;
Leonard, Effendi ;
Mucha, Oliver ;
Phon, Too Heng ;
Pfeifer, Blaine ;
Stephanopoulos, Gregory .
SCIENCE, 2010, 330 (6000) :70-74
[2]   Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli [J].
Alkim, Ceren ;
Cam, Yvan ;
Trichez, Debora ;
Auriol, Clement ;
Spina, Lucie ;
Vax, Amelie ;
Bartolo, Francois ;
Besse, Philippe ;
Francois, Jean Marie ;
Walther, Thomas .
MICROBIAL CELL FACTORIES, 2015, 14
[3]   L-LYXOSE METABOLISM EMPLOYS THE L-RHAMNOSE PATHWAY IN MUTANT-CELLS OF ESCHERICHIA-COLI ADAPTED TO GROW ON L-LYXOSE [J].
BADIA, J ;
GIMENEZ, R ;
BALDOMA, L ;
BARNES, E ;
FESSNER, WD ;
AGUILAR, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (16) :5144-5150
[4]   METABOLISM OF L-FUCOSE AND L-RHAMNOSE IN ESCHERICHIA-COLI - AEROBIC-ANAEROBIC REGULATION OF L-LACTALDEHYDE DISSIMILATION [J].
BALDOMA, L ;
AGUILAR, J .
JOURNAL OF BACTERIOLOGY, 1988, 170 (01) :416-421
[5]  
CABALLERO E, 1983, J BIOL CHEM, V258, P7788
[6]   OXYGEN REGULATION OF L-1,2-PROPANEDIOL OXIDOREDUCTASE ACTIVITY IN ESCHERICHIA-COLI [J].
CABISCOL, E ;
HIDALGO, E ;
BADIA, J ;
BALDOMA, L ;
ROS, JQ ;
AGUILAR, J .
JOURNAL OF BACTERIOLOGY, 1990, 172 (09) :5514-5515
[7]  
Cam Y., 2015, ACS SYNTH BIOL
[8]   Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose [J].
Chen, Zhen ;
Huang, Jinhai ;
Wu, Yao ;
Liu, Dehua .
METABOLIC ENGINEERING, 2016, 33 :12-18
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Metabolic engineering of E. coli for efficient production of glycolic acid from glucose [J].
Deng, Yu ;
Mao, Yin ;
Zhang, Xiaojuan .
BIOCHEMICAL ENGINEERING JOURNAL, 2015, 103 :256-262