Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

被引:49
|
作者
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ,2 ]
Roman, Raul-Cristian [1 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara, Romania
[2] Edith Cowan Univ, Sch Engn, Joondalup, WA, Australia
关键词
Aerodynamic system; data-driven control; model-free control; position control; reinforcement Q-learning; virtual reference feedback tuning; CONTROL DESIGN; EXPERIMENTAL VALIDATION; TRAJECTORY TRACKING; SEARCH ALGORITHM; VRFT APPROACH; SYSTEMS; OPTIMIZATION; TORQUE;
D O I
10.1080/00207721.2016.1236423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback tuning (VRFT) and nonlinear state-feedback Q-learning, referred to as a newmixed VRFT-Q learning approach. VRFT is first used to find stabilising feedback controller using input-output experimental data from the process in a model reference tracking setting. Reinforcement Q-learning is next applied in the same setting using input-state experimental data collected under perturbed VRFT to ensure good exploration. The Q-learning controller learned with a batch fitted Q iteration algorithm uses two neural networks, one for the Q-function estimator and one for the controller, respectively. The VRFT-Q learning approach is validated on position control of a two-degrees-of-motion open-loop stable multi input-multi output (MIMO) aerodynamic system (AS). Extensive simulations for the two independent control channels of theMIMO AS show that the Q-learning controllers clearly improve performance over the VRFT controllers.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 50 条
  • [31] Cooperative secondary voltage control of static converters in a microgrid using model-free reinforcement learning
    Smith, Edward
    Robinson, Duane A.
    Agalgaonkar, Ashish
    2019 21ST EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE '19 ECCE EUROPE), 2019,
  • [32] Model-free Based Reinforcement Learning Control Strategy of Aircraft Attitude Systems
    Huang, Dingcui
    Hu, Jiangping
    Peng, Zhinan
    Chen, Bo
    Hao, Mingrui
    Ghosh, Bijoy Kumar
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 743 - 748
  • [33] A model-free deep reinforcement learning approach for control of exoskeleton gait patterns
    Rose, Lowell
    Bazzocchi, Michael C. F.
    Nejat, Goldie
    ROBOTICA, 2022, 40 (07) : 2189 - 2214
  • [34] Data-driven MIMO model-free reference tracking control with nonlinear state-feedback and fractional order controllers
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    APPLIED SOFT COMPUTING, 2018, 73 : 992 - 1003
  • [35] Model-Free Q-Learning-Based Adaptive Optimal Control for Wheeled Mobile Robot
    Duc, Cuong Nguyen
    Pham, Sen Huong Thi
    Vu, Nga Thi-Thuy
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2025, 36 (01) : 86 - 100
  • [36] Model-Free Economic Dispatch for Virtual Power Plants: An Adversarial Safe Reinforcement Learning Approach
    Yi, Zhongkai
    Xu, Ying
    Wu, Chenyu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 3153 - 3168
  • [37] Model-free safe reinforcement learning for chemical processes using Gaussian processes
    Savage, Thomas
    Zhang, Dongda
    Mowbray, Max
    Chanona, Ehecatl Antonio Del Rio
    IFAC PAPERSONLINE, 2021, 54 (03): : 504 - 509
  • [38] Energy Management in Microgrids Using Model-Free Deep Reinforcement Learning Approach
    Talab, Odia A.
    Avci, Isa
    IEEE ACCESS, 2025, 13 : 5871 - 5891
  • [39] Model-free adaptive control design for nonlinear discrete-time processes with reinforcement learning techniques
    Liu, Dong
    Yang, Guang-Hong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2018, 49 (11) : 2298 - 2308
  • [40] Optimal behaviour prediction using a primitive-based data-driven model-free iterative learning control approach
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    COMPUTERS IN INDUSTRY, 2015, 74 : 95 - 109