Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

被引:49
|
作者
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ,2 ]
Roman, Raul-Cristian [1 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara, Romania
[2] Edith Cowan Univ, Sch Engn, Joondalup, WA, Australia
关键词
Aerodynamic system; data-driven control; model-free control; position control; reinforcement Q-learning; virtual reference feedback tuning; CONTROL DESIGN; EXPERIMENTAL VALIDATION; TRAJECTORY TRACKING; SEARCH ALGORITHM; VRFT APPROACH; SYSTEMS; OPTIMIZATION; TORQUE;
D O I
10.1080/00207721.2016.1236423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback tuning (VRFT) and nonlinear state-feedback Q-learning, referred to as a newmixed VRFT-Q learning approach. VRFT is first used to find stabilising feedback controller using input-output experimental data from the process in a model reference tracking setting. Reinforcement Q-learning is next applied in the same setting using input-state experimental data collected under perturbed VRFT to ensure good exploration. The Q-learning controller learned with a batch fitted Q iteration algorithm uses two neural networks, one for the Q-function estimator and one for the controller, respectively. The VRFT-Q learning approach is validated on position control of a two-degrees-of-motion open-loop stable multi input-multi output (MIMO) aerodynamic system (AS). Extensive simulations for the two independent control channels of theMIMO AS show that the Q-learning controllers clearly improve performance over the VRFT controllers.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 50 条
  • [1] Data-Driven Virtual Reference Feedback Tuning and Reinforcement Q-learning for Model-Free Position Control of an Aerodynamic System
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Roman, Raul-Cristian
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1126 - 1132
  • [2] Improving Model Reference Control Performance Using Model-Free VRFT and Q-Learning
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 7 - 13
  • [3] Virtual Reference Feedback Tuning of MIMO Data-Driven Model-Free Adaptive Control Algorithms
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Petriu, Emil M.
    TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS, 2016, 470 : 253 - 260
  • [4] Data-driven model-free slip control of anti-lock braking systems using reinforcement Q-learning
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    NEUROCOMPUTING, 2018, 275 : 317 - 329
  • [5] Data-driven Model-Free Adaptive Control Tuned by Virtual Reference Feedback Tuning
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Petriu, Emil M.
    ACTA POLYTECHNICA HUNGARICA, 2016, 13 (01) : 83 - 96
  • [6] Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Roman, Raul-Cristian
    ISA TRANSACTIONS, 2018, 73 : 227 - 238
  • [7] Optimal model-free adaptive control based on reinforcement Q-Learning for solar thermal collector fields
    Pataro, Igor M. L.
    Cunha, Rita
    Gil, Juan D.
    Guzman, Jose L.
    Berenguel, Manuel
    Lemos, Joao M.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [8] Output Feedback Optimal Tracking Control Using Reinforcement Q-Learning
    Rizvi, Syed Ali Asad
    Lin, Zongli
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3423 - 3428
  • [9] Improved model free adaptive control approach with virtual reference feedback tuning
    Jin, Shang-Tai
    Zhao, Ru-Li
    Hou, Zhong-Sheng
    Chi, Rong-Hu
    Kongzhi yu Juece/Control and Decision, 2015, 30 (12): : 2175 - 2180
  • [10] Combined Model-Free Adaptive Control with Fuzzy Component by Virtual Reference Feedback Tuning for Tower Crane Systems
    Roman, Raul-Cristian
    Precup, Radu-Emil
    Bojan-Dragos, Claudia-Adina
    Szedlak-Stinean, Alexandra-Iulia
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 267 - 274