Abundant multisoliton structures of the Konopelchenko-Dubrovsky equation

被引:3
|
作者
Zhao, Hong [1 ]
Han, Ji-Guang [1 ]
Wang, Wei-Tao [1 ]
An, Hong-Yong [1 ]
机构
[1] Liaocheng Univ, Sch Phys Sci & Informat Engn, Shandong 252059, Peoples R China
关键词
homogeneous balance method; (2+1) dimensions; KD equation; soliton solutions;
D O I
10.1007/s10582-006-0450-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the homogenous balance method, the nonlinear transformations of the (2+1)-dimensional integrable Konopelchenko-Dubrovsky equation are given, and then some new special types of single solitary wave solution and the multisoliton solutions are constructed.
引用
收藏
页码:1381 / 1388
页数:8
相关论文
共 50 条
  • [1] New multisoliton solutions for (2+1) dimensional Konopelchenko-Dubrovsky equations
    Ye Cai-Er
    Zhang Wei-Guo
    ACTA PHYSICA SINICA, 2010, 59 (08) : 5229 - 5234
  • [2] On group-invariant solutions of Konopelchenko-Dubrovsky equation by using Lie symmetry approach
    Kumar, Mukesh
    Tiwari, Atul Kumar
    NONLINEAR DYNAMICS, 2018, 94 (01) : 475 - 487
  • [3] Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique
    Barman, Hemonta Kumar
    Akbar, M. Ali
    Osman, M. S.
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    Abdel-Aty, Abdel-Haleem
    Eleuch, Hichem
    RESULTS IN PHYSICS, 2021, 24
  • [4] Exact solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky system using Sardar sub-equation method
    Tarla, Sibel
    Ali, Karmina K.
    Yusuf, Abdullahi
    Uzun, Berna
    Salahshour, Soheil
    MODERN PHYSICS LETTERS B, 2025, 39 (13):
  • [5] Propagation of nonlinear waves with a weak dispersion via coupled (2+1)-dimensional Konopelchenko-Dubrovsky dynamical equation
    Seadawy, Aly R.
    Yaro, David
    Lu, Dianchen
    PRAMANA-JOURNAL OF PHYSICS, 2019, 94 (01):
  • [6] New perspective to the fractal Konopelchenko-Dubrovsky equations with M-truncated fractional derivative
    Wang, Kangle
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)
  • [7] Abundant multisoliton structures of the generalized Nizhnik-Novikov-Veselov equation
    Zhang, JF
    Chen, FJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (04) : 395 - 399
  • [8] Probing nonlinear wave dynamics: Insights from the (2+1)-dimensional Konopelchenko-Dubrovsky System
    Fahad, Asfand
    Boulaaras, Salah Mahmoud
    Rehman, Hamood Ur
    Iqbal, Ifrah
    Chou, Dean
    RESULTS IN PHYSICS, 2024, 57
  • [9] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [10] On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Feng, Lian-Li
    Tian, Shou-Fu
    Yan, Hui
    Wang, Li
    Zhang, Tian-Tian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (07):