Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries

被引:286
|
作者
Liang, Jianneng [1 ]
Luo, Jing [1 ]
Sun, Qian [1 ]
Yang, Xiaofei [1 ]
Li, Ruying [1 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Solid-state electrolytes; Solid-state batteries; Hybrid electrolytes; Interface; NANOCOMPOSITE POLYMER ELECTROLYTES; HIGH IONIC-CONDUCTIVITY; ATOMIC LAYER DEPOSITION; GARNET-TYPE OXIDE; MECHANICAL-PROPERTIES; SULFUR BATTERIES; ELECTROCHEMICAL PROPERTIES; COMPOSITE ELECTROLYTES; TRANSPORT-PROPERTIES; SECONDARY BATTERIES;
D O I
10.1016/j.ensm.2019.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium batteries are promising energy storage systems for applications in electric vehicles. However, conventional liquid electrolytes inherit serious safety hazards including leakage, ignition and even explosion upon overheating. Solid-state electrolytes (SSEs) are considered as the ultimate solution to these safety concerns because of their excellent thermal and electrochemical stabilities. Nevertheless, few individual SSE has reached practical application standards due to incomprehensive performance. High ionic conductivity, low interfacial resistance, and high stability towards electrodes are difficult to achieve simultaneously with an individual SSE. Hybrid electrolytes rationally combining two or more types of SSEs with complementary advantages are promising for building feasible solid-state lithium batteries (SSLBs). Coupling desired soft electrolyte and stiff inorganic SSEs can ensure good electrode wettability, high ionic conductivity, and high mechanical strength to prevent lithium dendrite formation at the same time. In this review, comprehensive perspectives from the broad context of the importance of hybrid electrolytes to subtle design concepts are summarized. This review not only covers the introductory of classifications, synthesis methods, and ionic conductivity mechanism, but also crystallizes the strategies for enhancing the ionic conductivity of hybrid electrolyte, the understandings on the interfacial challenges of the electrolyte/electrolyte and electrolyte/electrode interfaces, and the strategies for building feasible SSLBs with different hybrid electrolyte combinations.
引用
收藏
页码:308 / 334
页数:27
相关论文
共 50 条
  • [41] Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Liu, Sijie
    Zhou, Le
    Zhong, Tingjun
    Wu, Xin
    Neyts, Kristiaan
    ADVANCED ENERGY MATERIALS, 2024,
  • [42] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [43] Unconventional solid-state electrolytes for lithium-based batteries: Recent advances and challenges
    Mei, Han-xin
    Piccardo, Paolo
    Cingolani, Alessandro
    Spotorno, Roberto
    JOURNAL OF POWER SOURCES, 2023, 553
  • [44] Solid-State Electrolytes for Lithium Metal Batteries: State-of-the-Art and Perspectives
    Huang, Jun
    Li, Chen
    Jiang, Dongkai
    Gao, Jingyi
    Cheng, Lei
    Li, Guocheng
    Luo, Hang
    Xu, Zheng-Long
    Shin, Dong-Myeong
    Wang, Yanming
    Lu, Yingying
    Kim, Yoonseob
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (01)
  • [45] Insights on solid electrolytes for solid-state magnesium batteries: Progress and prospects
    Sun, Qi
    Luo, Shaohua
    Huang, Rui
    Liu, Qiuyue
    Yan, Shengxue
    Lin, Xiaoping
    ENERGY STORAGE MATERIALS, 2024, 70
  • [46] Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries
    Wang, Xu
    Huang, Sipeng
    Peng, Yiting
    Min, Yulin
    Xu, Qunjie
    CHEMSUSCHEM, 2024, 17 (14)
  • [47] A review of polymers in sulfide-based hybrid solid-state electrolytes for all-solid-state lithium batteries
    Kim, Minjae
    Seo, Junhyeok
    Suba, Jeanie Pearl Dizon
    Cho, Kuk Young
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (22) : 5475 - 5499
  • [48] State-of-the-Art of Solid-State Electrolytes on the Road Map of Solid-State Lithium Metal Batteries for E-Mobility
    Aizat Razali, Adi
    Norazli, Siti Nurshahira
    Sum, Wei Siang
    Yeo, Siew Yean
    Dolfi, Andrea
    Srinivasan, Geetha
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (21) : 7927 - 7964
  • [49] Progress and Perspective of Solid-State Lithium-Sulfur Batteries
    Lei, Danni
    Shi, Kai
    Ye, Heng
    Wan, Zipei
    Wang, Yanyan
    Shen, Lu
    Li, Baohua
    Yang, Quan-Hong
    Kang, Feiyu
    He, Yan-Bing
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [50] The role of polymers in lithium solid-state batteries with inorganic solid electrolytes
    Sen, Sudeshna
    Trevisanello, Enrico
    Niemoeller, Elard
    Shi, Bing-Xuan
    Simon, Fabian J.
    Richter, Felix H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 18701 - 18732