Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries

被引:286
|
作者
Liang, Jianneng [1 ]
Luo, Jing [1 ]
Sun, Qian [1 ]
Yang, Xiaofei [1 ]
Li, Ruying [1 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Solid-state electrolytes; Solid-state batteries; Hybrid electrolytes; Interface; NANOCOMPOSITE POLYMER ELECTROLYTES; HIGH IONIC-CONDUCTIVITY; ATOMIC LAYER DEPOSITION; GARNET-TYPE OXIDE; MECHANICAL-PROPERTIES; SULFUR BATTERIES; ELECTROCHEMICAL PROPERTIES; COMPOSITE ELECTROLYTES; TRANSPORT-PROPERTIES; SECONDARY BATTERIES;
D O I
10.1016/j.ensm.2019.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium batteries are promising energy storage systems for applications in electric vehicles. However, conventional liquid electrolytes inherit serious safety hazards including leakage, ignition and even explosion upon overheating. Solid-state electrolytes (SSEs) are considered as the ultimate solution to these safety concerns because of their excellent thermal and electrochemical stabilities. Nevertheless, few individual SSE has reached practical application standards due to incomprehensive performance. High ionic conductivity, low interfacial resistance, and high stability towards electrodes are difficult to achieve simultaneously with an individual SSE. Hybrid electrolytes rationally combining two or more types of SSEs with complementary advantages are promising for building feasible solid-state lithium batteries (SSLBs). Coupling desired soft electrolyte and stiff inorganic SSEs can ensure good electrode wettability, high ionic conductivity, and high mechanical strength to prevent lithium dendrite formation at the same time. In this review, comprehensive perspectives from the broad context of the importance of hybrid electrolytes to subtle design concepts are summarized. This review not only covers the introductory of classifications, synthesis methods, and ionic conductivity mechanism, but also crystallizes the strategies for enhancing the ionic conductivity of hybrid electrolyte, the understandings on the interfacial challenges of the electrolyte/electrolyte and electrolyte/electrode interfaces, and the strategies for building feasible SSLBs with different hybrid electrolyte combinations.
引用
收藏
页码:308 / 334
页数:27
相关论文
共 50 条
  • [31] Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives
    Zhao, Wenjia
    Yi, Jin
    He, Ping
    Zhou, Haoshen
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 574 - 605
  • [32] Covalent Organic Framework-Based Electrolytes for Lithium Solid-State Batteries-Recent Progress
    Polczyk, Tomasz
    Nagai, Atsushi
    BATTERIES-BASEL, 2023, 9 (09):
  • [33] MOFs Containing Solid-State Electrolytes for Batteries
    Jiang, Shu
    Lv, Tingting
    Peng, Yi
    Pang, Huan
    ADVANCED SCIENCE, 2023, 10 (10)
  • [34] Structural engineering developments in sulfide solid-state electrolytes for lithium and sodium solid-state batteries
    Nafis, Mohammad Sufiyan
    Liang, Zhiming
    Lee, Sehee
    Ban, Chunmei
    NANO ENERGY, 2025, 133
  • [35] Polymer electrolytes and interfaces in solid-state lithium metal batteries
    Ding, Peipei
    Lin, Zhiyuan
    Guo, Xianwei
    Wu, Lingqiao
    Wang, Yongtao
    Guo, Hongxia
    Li, Liangliang
    Yu, Haijun
    MATERIALS TODAY, 2021, 51 : 449 - 474
  • [36] Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective
    Huang, Jian
    Liang, Feng
    Hou, Minjie
    Zhang, Yingjie
    Chen, Kunfeng
    Xue, Dongfeng
    APPLIED MATERIALS TODAY, 2020, 20
  • [37] Solid-State Electrolytes for Lithium-Sulfur Batteries
    Zhang Huiming
    Guo Cheng
    Nuli Yanna
    Yang Jun
    Wang Jiulin
    Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (04) : 565 - 577
  • [38] Advances in sulfide solid-state electrolytes for lithium batteries
    Yao, Mingxuan
    Shi, Jiangtao
    Luo, Anhong
    Zhang, Zheqi
    Zhu, Guisheng
    Xu, Huarui
    Xu, Jiwen
    Jiang, Li
    Jiang, Kunpeng
    ENERGY STORAGE MATERIALS, 2025, 75
  • [39] Perovskite Solid-State Electrolytes for Lithium Metal Batteries
    Yan, Shuo
    Yim, Chae-Ho
    Pankov, Vladimir
    Bauer, Mackenzie
    Baranova, Elena
    Weck, Arnaud
    Merati, Ali
    Abu-Lebdeh, Yaser
    BATTERIES-BASEL, 2021, 7 (04):
  • [40] Solid-State Electrolytes for Lithium-Air Batteries
    Qi, Xianhai
    Liu, Dapeng
    Yu, Haohan
    Fu, Zerui
    Zhang, Yu
    BATTERIES & SUPERCAPS, 2024,