Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries

被引:286
|
作者
Liang, Jianneng [1 ]
Luo, Jing [1 ]
Sun, Qian [1 ]
Yang, Xiaofei [1 ]
Li, Ruying [1 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Solid-state electrolytes; Solid-state batteries; Hybrid electrolytes; Interface; NANOCOMPOSITE POLYMER ELECTROLYTES; HIGH IONIC-CONDUCTIVITY; ATOMIC LAYER DEPOSITION; GARNET-TYPE OXIDE; MECHANICAL-PROPERTIES; SULFUR BATTERIES; ELECTROCHEMICAL PROPERTIES; COMPOSITE ELECTROLYTES; TRANSPORT-PROPERTIES; SECONDARY BATTERIES;
D O I
10.1016/j.ensm.2019.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium batteries are promising energy storage systems for applications in electric vehicles. However, conventional liquid electrolytes inherit serious safety hazards including leakage, ignition and even explosion upon overheating. Solid-state electrolytes (SSEs) are considered as the ultimate solution to these safety concerns because of their excellent thermal and electrochemical stabilities. Nevertheless, few individual SSE has reached practical application standards due to incomprehensive performance. High ionic conductivity, low interfacial resistance, and high stability towards electrodes are difficult to achieve simultaneously with an individual SSE. Hybrid electrolytes rationally combining two or more types of SSEs with complementary advantages are promising for building feasible solid-state lithium batteries (SSLBs). Coupling desired soft electrolyte and stiff inorganic SSEs can ensure good electrode wettability, high ionic conductivity, and high mechanical strength to prevent lithium dendrite formation at the same time. In this review, comprehensive perspectives from the broad context of the importance of hybrid electrolytes to subtle design concepts are summarized. This review not only covers the introductory of classifications, synthesis methods, and ionic conductivity mechanism, but also crystallizes the strategies for enhancing the ionic conductivity of hybrid electrolyte, the understandings on the interfacial challenges of the electrolyte/electrolyte and electrolyte/electrode interfaces, and the strategies for building feasible SSLBs with different hybrid electrolyte combinations.
引用
收藏
页码:308 / 334
页数:27
相关论文
共 50 条
  • [21] Solid-State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective
    Jiang, Pengfeng
    Du, Guangyuan
    Cao, Jiaqi
    Zhang, Xianyong
    Zou, Chuanchao
    Liu, Yitao
    Lu, Xia
    ENERGY TECHNOLOGY, 2023, 11 (03)
  • [22] Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics
    Yu, Chuang
    Zhao, Feipeng
    Luo, Jing
    Zhang, Long
    Sun, Xueliang
    NANO ENERGY, 2021, 83
  • [23] Review on composite solid electrolytes for solid-state lithium-ion batteries
    Zhang, Z.
    Wang, X.
    Li, X.
    Zhao, J.
    Liu, G.
    Yu, W.
    Dong, X.
    Wang, J.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [24] Oxide Solid Electrolytes in Solid-State Batteries
    Umair, Muhammad
    Zhou, Shiqiang
    Li, Wenzheng
    Rana, Hafiz Talha Hasnain
    Yang, Jingyi
    Cheng, Lukuan
    Li, Mengrui
    Yu, Suzhu
    Wei, Jun
    BATTERIES & SUPERCAPS, 2024,
  • [25] Progress and Perspective of Glass-Ceramic Solid-State Electrolytes for Lithium Batteries
    Lin, Liyang
    Guo, Wei
    Li, Mengjun
    Qing, Juan
    Cai, Chuang
    Yi, Ping
    Deng, Qibo
    Chen, Wei
    MATERIALS, 2023, 16 (07)
  • [26] Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies
    Zhu, Qiancheng
    Ye, Chun
    Mao, Deyu
    NANOMATERIALS, 2022, 12 (20)
  • [27] Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries
    Ahmad, Haseeb
    Kubra, Khadija Tul
    Butt, Annam
    Nisar, Umair
    Iftikhar, Faiza Jan
    Ali, Ghulam
    JOURNAL OF POWER SOURCES, 2023, 581
  • [28] Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries
    Guo, Junze
    Zheng, Jieping
    Zhang, Weidong
    Lu, Yingying
    ENERGY & FUELS, 2021, 35 (14) : 11118 - 11140
  • [29] Recent progress in solid-state electrolytes for alkali-ion batteries
    Cheng Jiang
    Huiqiao Li
    Chengliang Wang
    Science Bulletin, 2017, 62 (21) : 1473 - 1490
  • [30] Progress and prospective of solid-state lithium batteries
    Takada, Kazunori
    ACTA MATERIALIA, 2013, 61 (03) : 759 - 770