Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil-water separation

被引:27
|
作者
Yang, Jing [1 ]
Pu, Yi [1 ]
He, Hongwei [1 ]
Cao, Renguang [2 ]
Miao, Dagang [1 ]
Ning, Xin [1 ]
机构
[1] Qingdao Univ, Ind Res Inst Nonwovens & Tech Text IRINTT, Coll Text & Clothing, Qingdao 266071, Shandong, Peoples R China
[2] CHTC Jiahua Nonwoven Co Ltd, Wuhan 433000, Hubei, Peoples R China
基金
中国博士后科学基金;
关键词
Superhydrophobic cotton nonwoven; Atmospheric pressure plasma jet; Siloxane; Self-cleaning; Oil-water separation; OIL/WATER SEPARATION; PRESSURE PLASMA; ROBUST; COATINGS; HEXAMETHYLDISILOXANE; POLYMERIZATION; NANOPARTICLES; DEPOSITION; SPONGES; SPRAY;
D O I
10.1007/s10570-019-02590-y
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
In this study, a superhydrophobic cotton nonwoven fabric for oil-water separation was prepared by graft polymerization of siloxane under atmospheric pressure plasma in the medium of Air, N-2 or O-2. The effects of different process conditions on the contact angle, surface morphology, stability of the hydrophobic coating and the growth of nano-particles were investigated. This modified cotton nonwoven was tested for self-cleaning and oil-water separation efficiency. The surface characteristics of the prepared cotton nonwoven were systematically analyzed using scanning electron microscopy, Energy Dispersive X-ray Spectroscopy, and Fourier transform infrared spectroscopy. The water contact angle of treated nonwoven was up to 155 degrees, and the precursor and jet movement speed have great influences on the surface morphologies and stability of the coating. Separation efficiency for oil-water mixture is higher than 97% and can be repeated for at least 10 times. Moreover, the superhydrophobic nonwoven treatment showed excellent stability toward strong acid and alkaline conditions, the resulting fabrics may be used under harsh environmental conditions.
引用
收藏
页码:7507 / 7522
页数:16
相关论文
共 50 条
  • [41] Multifunctional carbonized Zn-MOF coatings for cotton fabric: Unveiling synergistic effects of superhydrophobic, oil-water separation, self-cleaning, and UV protection features
    Nodoushan, Roya Mohammadipour
    Shekarriz, Shahla
    Shariatinia, Zahra
    Montazer, Majid
    Heydari, Abolfazl
    SURFACE & COATINGS TECHNOLOGY, 2023, 475
  • [42] Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation
    Ahmad, Naseer
    Rasheed, Sufian
    Ahmed, Khalid
    Musharraf, Syed Ghulam
    Najam-ul-Haq, Muhammad
    Hussain, Dilshad
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 306
  • [43] Fabrication of durable underoil superhydrophobic surfaces with self-cleaning and oil-water separation properties
    Ren, Wanfei
    Lian, Zhongxu
    Wang, Jiaqi
    Xu, Jinkai
    Yu, Huadong
    RSC ADVANCES, 2022, 12 (07) : 3838 - 3846
  • [44] A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation
    Hongyu Liu
    Lin Yang
    Yifei Zhan
    Jianwu Lan
    Jiaojiao Shang
    Mi Zhou
    Shaojian Lin
    Cellulose, 2021, 28 : 1715 - 1729
  • [45] Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil-water separation properties
    Panda, Anita
    Varshney, Priya
    Mohapatra, Soumya S.
    Kumar, Aditya
    CARBOHYDRATE POLYMERS, 2018, 181 : 1052 - 1060
  • [46] Fabrication of AgNPs/Silane coated mechanical and washing durable hydrophobic cotton textile for self-cleaning and oil-water separation application
    Pal, Sukanta
    Mondal, Sourav
    Pal, Prasanta
    Das, Ajit
    Maity, Jayanta
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2022, 99 (01)
  • [47] Superhydrophobic materials with good oil/water separation and self-cleaning property
    Wensheng Lin
    Mengting Cao
    Kehinde Olonisakin
    Ran Li
    Xinxiang Zhang
    Wenbin Yang
    Cellulose, 2021, 28 : 10425 - 10439
  • [48] Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying
    Huang, Jingda
    Wang, Siqun
    Lyu, Shaoyi
    Fu, Feng
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 122 : 438 - 447
  • [49] Fluorine-Free Bio-Based Multifunctional Superhydrophobic Hyperbranched Self-Cleaning Coating for Oil-Water Separation
    Cao, Yang
    Zhou, Meng
    Fu, Heqing
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (01)