Finite element method for solving geodetic boundary value problems
被引:29
|
作者:
Faskova, Zuzana
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, SlovakiaSlovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
Faskova, Zuzana
[1
]
Cunderlik, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, SlovakiaSlovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
Cunderlik, Robert
[1
]
Mikula, Karol
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, SlovakiaSlovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
Mikula, Karol
[1
]
机构:
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
Geodetic boundary value problem;
Global and local gravity field modelling;
Finite element method;
NUMERICAL-SOLUTION;
GRAVITY-FIELD;
D O I:
10.1007/s00190-009-0349-7
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in the form of a spherical approximation or real triangulation of the Earth's surface on which surface gravity disturbances are given. We introduce additional upper (spherical) and side (planar and conical) boundaries where the Dirichlet BC is given. Solution of such elliptic BVP is understood in a weak sense, it always exists and is unique and can be efficiently found by the finite element method (FEM). We briefly present derivation of FEM for such type of problems including main discretization ideas. This method leads to a solution of the sparse symmetric linear systems which give the Earth's potential solution in every discrete node of the 3D computational domain. In this point our method differs from other numerical approaches, e.g. boundary element method (BEM) where the potential is sought on a hypersurface only. We apply and test FEM in various situations. First, we compare the FEM solution with the known exact solution in case of homogeneous sphere. Then, we solve the geodetic BVP in continental scale using the DNSC08 data. We compare the results with the EGM2008 geopotential model. Finally, we study the precision of our solution by the GPS/levelling test in Slovakia where we use terrestrial gravimetric measurements as input data. All tests show qualitative and quantitative agreement with the given solutions.
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, SlovakiaSlovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
Macak, Marek
Mikula, Karol
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, SlovakiaSlovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
Mikula, Karol
Minarechova, Zuzana
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, SlovakiaSlovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava, SlovakiaHong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
Cunderlik, Robert
Tenzer, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
Tenzer, Robert
Macak, Marek
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava, SlovakiaHong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
Macak, Marek
Zahorec, Pavol
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Acad Sci, Earth Sci Inst, Dept Gravimetry & Geodynam, Banska Bystrica, SlovakiaHong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
Zahorec, Pavol
Papco, Juraj
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Global Geodesy & Geoinformat, Bratislava, SlovakiaHong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
Papco, Juraj
Nsiah Ababio, Albertini
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
机构:
Department of Computational Mathematics and Cybernetics, Moscow State University, MoscowDepartment of Computational Mathematics and Cybernetics, Moscow State University, Moscow
Zolotareva N.D.
Nikolaev E.S.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Computational Mathematics and Cybernetics, Moscow State University, MoscowDepartment of Computational Mathematics and Cybernetics, Moscow State University, Moscow