Fixed-Point Implementation of Extrapolation ODE Solvers

被引:0
作者
Tutueva, Aleksandra [1 ]
Andreev, Valery [1 ]
Karimov, Timur [1 ]
Kopets, Ekaterina [2 ]
Khalyasmaa, Alexandra [3 ]
机构
[1] St Petersburg Electrotech Univ LETI, Dept Comp Aided Design, St Petersburg, Russia
[2] St Petersburg Electrotech Univ LETI, Youth Res Inst, St Petersburg, Russia
[3] Ural Fed Univ, Automated Elect Syst Dept, Ekaterinburg, Russia
来源
2019 URAL SYMPOSIUM ON BIOMEDICAL ENGINEERING, RADIOELECTRONICS AND INFORMATION TECHNOLOGY (USBEREIT) | 2019年
关键词
ordinary differential equations; stepsize control; extrapolation methods; chaotic system; fixed-point arithmetic;
D O I
10.1109/usbereit.2019.8736599
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we propose the fixed-point implementation of extrapolation ODE solvers with adaptive stepsize. We show the applicability of the given approach for solving nonlinear differential equations through the simulation of the chaotic Halvorsen system. The experimental part of the study considers the analysis of local truncation error and integration step variation for floating-point and fixed-point solvers with different machine word length. It is revealed that with equal parameters fixed-point ODE solvers can achieve greater accuracy than floating-point solvers for the same bit length.
引用
收藏
页码:310 / 312
页数:3
相关论文
共 9 条
[1]  
Andreev VS, 2017, PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), P337, DOI 10.1109/SCM.2017.7970578
[2]  
Andreev VS, 2017, IEEE NW RUSS YOUNG, P254, DOI 10.1109/EIConRus.2017.7910542
[3]  
Butusov DN, 2016, PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), P107, DOI 10.1109/SCM.2016.7519698
[4]  
Butusov DN, 2016, PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), P137, DOI 10.1109/SCM.2016.7519708
[5]  
Butusov DN, 2016, IEEE NW RUSS YOUNG, P162, DOI 10.1109/EIConRusNW.2016.7448145
[6]  
Hairer E., 1993, Springer Series in Computational Mathematics, V8
[7]  
Hairer Ernst, 2006, Springer Series in Computational Mathematics, V31
[8]  
Sprott J. C., 2010, Elegant Chaos: Algebraically Simple Chaotic Flows
[9]  
Wanner G., 1996, SPRINGER SERIES COMP