Model-based assessment of replicability for genome-wide association meta-analysis

被引:22
作者
McGuire, Daniel [1 ]
Jiang, Yu [1 ]
Liu, Mengzhen [2 ]
Weissenkampen, J. Dylan [1 ]
Eckert, Scott [1 ]
Yang, Lina [1 ]
Chen, Fang [1 ]
Berg, Arthur [1 ]
Vrieze, Scott [2 ]
Jiang, Bibo [1 ]
Li, Qunhua [3 ]
Liu, Dajiang J. [1 ]
机构
[1] Penn State Coll Med, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[2] Univ Minnesota, Dept Psychol, Minneapolis, MN USA
[3] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
基金
美国国家卫生研究院;
关键词
GENE; DISCOVERY; BIOLOGY; LOCI; TOOL;
D O I
10.1038/s41467-021-21226-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome-wide association meta-analysis (GWAMA) is an effective approach to enlarge sample sizes and empower the discovery of novel associations between genotype and phenotype. Independent replication has been used as a gold-standard for validating genetic associations. However, as current GWAMA often seeks to aggregate all available datasets, it becomes impossible to find a large enough independent dataset to replicate new discoveries. Here we introduce a method, MAMBA (Meta-Analysis Model-based Assessment of replicability), for assessing the "posterior-probability-of-replicability" for identified associations by leveraging the strength and consistency of association signals between contributing studies. We demonstrate using simulations that MAMBA is more powerful and robust than existing methods, and produces more accurate genetic effects estimates. We apply MAMBA to a large-scale meta-analysis of addiction phenotypes with 1.2 million individuals. In addition to accurately identifying replicable common variant associations, MAMBA also pinpoints novel replicable rare variant associations from imputation-based GWAMA and hence greatly expands the set of analyzable variants. In genome-wide association meta-analysis, it is often difficult to find an independent dataset of sufficient size to replicate associations. Here, the authors have developed MAMBA to calculate the probability of replicability based on consistency between datasets within the meta-analysis.
引用
收藏
页数:14
相关论文
共 52 条
[1]   Extracting replicable associations across multiple studies: Empirical Bayes algorithms for controlling the false discovery rate [J].
Amar, David ;
Shamir, Ron ;
Yekutieli, Daniel .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08) :e1005700
[2]   Genome-wide association study of smoking behaviours among Bangladeshi adults [J].
Argos, Maria ;
Tong, Lin ;
Pierce, Brandon L. ;
Rakibuz-Zaman, Muhammad ;
Ahmed, Alauddin ;
Islam, Tariqul ;
Rahman, Mahfuzar ;
Paul-Brutus, Rachelle ;
Rahaman, Ronald ;
Roy, Shantanu ;
Jasmine, Farzana ;
Kibriya, Muhammad G. ;
Ahsan, Habibul .
JOURNAL OF MEDICAL GENETICS, 2014, 51 (05) :327-333
[3]  
Auguie Baptiste, 2017, CRAN
[4]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+
[5]   Sequence variations in PCSK9, low LDL, and protection against coronary heart disease [J].
Cohen, JC ;
Boerwinkle, E ;
Mosley, TH ;
Hobbs, HH .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (12) :1264-1272
[6]   Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease [J].
Crosby, Jacy ;
Peloso, Gina M. ;
Auer, Paul L. ;
Crosslin, David R. ;
Stitziel, Nathan O. ;
Lange, Leslie A. ;
Lu, Yingchang ;
Tang, Zheng-zheng ;
Zhang, He ;
Hindy, George ;
Masca, Nicholas ;
Stirrups, Kathleen ;
Kanoni, Stavroula ;
Do, Ron ;
Jun, Goo ;
Hu, Youna ;
Kang, Hyun Min ;
Xue, Chenyi ;
Goel, Anuj ;
Farrall, Martin ;
Duga, Stefano ;
Merlini, Pier Angelica ;
Asselta, Rosanna ;
Girelli, Domenico ;
Olivieri, Oliviero ;
Martinelli, Nicola ;
Yin, Wu ;
Reilly, Dermot ;
Speliotes, Elizabeth ;
Fox, Caroline S. ;
Hveem, Kristian ;
Holmen, Oddgeir L. ;
Nikpay, Majid ;
Farlow, Deborah N. ;
Assimes, Themistocles L. ;
Franceschini, Nora ;
Robinson, Jennifer ;
North, Kari E. ;
Martin, Lisa W. ;
DePristo, Mark ;
Gupta, Namrata ;
Escher, Stefan A. ;
Jansson, Jan-Hakan ;
Van Zuydam, Natalie ;
Palmer, Colin N. A. ;
Wareham, Nicholas ;
Koch, Werner ;
Meitinger, Thomas ;
Peters, Annette ;
Lieb, Wolfgang .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (01) :22-31
[7]  
Dahl D.B., 2009, XTABLE EXPORT TABLES, P1
[8]  
Dowle M., 2021, Package data.table. Extension of Data.Frame.
[9]   The genetic architecture of type 2 diabetes [J].
Fuchsberger, Christian ;
Flannick, Jason ;
Teslovich, Tanya M. ;
Mahajan, Anubha ;
Agarwala, Vineeta ;
Gaulton, Kyle J. ;
Ma, Clement ;
Fontanillas, Pierre ;
Moutsianas, Loukas ;
McCarthy, Davis J. ;
Rivas, Manuel A. ;
Perry, John R. B. ;
Sim, Xueling ;
Blackwell, Thomas W. ;
Robertson, Neil R. ;
Rayner, N. William ;
Cingolani, Pablo ;
Locke, Adam E. ;
Tajes, Juan Fernandez ;
Highland, Heather M. ;
Dupuis, Josee ;
Chines, Peter S. ;
Lindgren, Cecilia M. ;
Hartl, Christopher ;
Jackson, Anne U. ;
Chen, Han ;
Huyghe, Jeroen R. ;
van de Bunt, Martijn ;
Pearson, Richard D. ;
Kumar, Ashish ;
Mueller-Nurasyid, Martina ;
Grarup, Niels ;
Stringham, Heather M. ;
Gamazon, Eric R. ;
Lee, Jaehoon ;
Chen, Yuhui ;
Scott, Robert A. ;
Below, Jennifer E. ;
Chen, Peng ;
Huang, Jinyan ;
Go, Min Jin ;
Stitzel, Michael L. ;
Pasko, Dorota ;
Parker, Stephen C. J. ;
Varga, Tibor V. ;
Green, Todd ;
Beer, Nicola L. ;
Day-Williams, Aaron G. ;
Ferreira, Teresa ;
Fingerlin, Tasha .
NATURE, 2016, 536 (7614) :41-+
[10]   A gene-based association method for mapping traits using reference transcriptome data [J].
Gamazon, Eric R. ;
Wheeler, Heather E. ;
Shah, Kaanan P. ;
Mozaffari, Sahar V. ;
Aquino-Michaels, Keston ;
Carroll, Robert J. ;
Eyler, Anne E. ;
Denny, Joshua C. ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Im, Hae Kyung .
NATURE GENETICS, 2015, 47 (09) :1091-+