A MINICOURSE ON THE LOW MACH NUMBER LIMIT

被引:26
作者
Alazard, Thomas [1 ]
机构
[1] Univ Paris Sud, Lab Math, CNRS, UMR8628, F-91405 Orsay, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2008年 / 1卷 / 03期
关键词
Singular limit; compressible and pseudo-incompressible fluids;
D O I
10.3934/dcdss.2008.1.365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
These lectures are devoted to the study of the low Mach number limit for classical solutions of the compressible Navier-Stokes or Euler equations for non-isentropic fluids. We study the general case where the combined effects of large temperature variations and thermal conduction are taken into account.
引用
收藏
页码:365 / 404
页数:40
相关论文
共 92 条
[1]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[2]  
Alazard T., 2007, ADV MATH FLUID MECH, P1
[3]   Low Mach number flows and combustion [J].
Alazard, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1186-1213
[4]  
Alazard T, 2005, ADV DIFFERENTIAL EQU, V10, P19
[6]   Free decay of solutions to wave equations on a curved background [J].
Alinhac, S .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2005, 133 (03) :419-458
[7]  
Alvarez-Samaniego B., INDIANA U MATH J
[8]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[9]  
[Anonymous], 1984, APPL MATH SCI
[10]  
[Anonymous], HDB DIFFERENTIAL EQU