Robust Mobile Location Estimation in NLOS Environment Using GMM, IMM, and EKF

被引:35
作者
Cui, Wei [1 ]
Li, Bing [1 ,2 ]
Zhang, Le [3 ]
Meng, Wei [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Shandong, Peoples R China
[2] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
[3] Univ Illinois, Adv Digital Sci Ctr, Singapore 138602, Singapore
[4] Guangdong Univ Technol, Guangzhou 510006, Guangdong, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2019年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
Gaussian mixture model (GMM); indoor environment; interacting multiple model; mobile location estimator; non-line-of-sight (NLOS); WIRELESS LOCALIZATION; TERMINAL TRACKING; MITIGATION; TOA;
D O I
10.1109/JSYST.2018.2866592
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Indoor mobile localization in real-life scenarios often suffers from frequent transitions of sensor measurements between line-of-sight (LOS), non-line-of-sight (NLOS), and/or mixed LOS and NLOS conditions (LOS-NLOS). To address this, we propose GIMM-EKF by integrating Gaussian mixture model (GMM), interacting multiple model (IMM), and extended Kalman filter (EKF). In GIMM-EKF, GMM aims at modeling the distribution of a set of mixed LOS-NLOS range estimates. Then, a Kalman-based IMM framework is introduced with the estimated state probabilities from the GMM. Finally, an EKF is employed to estimate the target's location based on the resulting range estimates. The proposed GIMM-EKF works in a synergistic manner and outperforms several challenging baselines significantly. Experimental results demonstrate the feasibility of GIMM-EKF in mitigating the adverse impacts of severe NLOS errors and accurately estimating the mobile location in the LOS/NLOS/LOS-NLOS transition conditions.
引用
收藏
页码:3490 / 3500
页数:11
相关论文
共 37 条
  • [1] [Anonymous], 2013, Abstr Appl Anal, DOI [DOI 10.4225/08/58B5BAAD4FCC2, DOI 10.1155/2013/157140]
  • [2] THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS
    BLOM, HAP
    BARSHALOM, Y
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) : 780 - 783
  • [3] Borras J, 1998, IEEE VTC P, P1583, DOI 10.1109/VETEC.1998.686556
  • [4] Mobile Location Estimator in a Rough Wireless Environment Using Extended Kalman-Based IMM and Data Fusion
    Chen, Bor-Sen
    Yang, Chang-Yi
    Liao, Feng-Ko
    Liao, Jung-Feng
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (03) : 1157 - 1169
  • [5] Chen PC, 1999, IEEE VTS VEH TECHNOL, P1979, DOI 10.1109/VETEC.1999.778388
  • [6] Chen Pi-Chun, 1999, P IEEE WIR COMM NETW, V1, P316, DOI [10.1109/WCNC.1999.797838, DOI 10.1109/WCNC.1999.797838]
  • [7] Occupancy Counting With Burst and Intermittent Signals in Smart Buildings
    Ciftler, Bekir Sait
    Dikmese, Sener
    Guvenc, Ismail
    Akkaya, Kemal
    Kadri, Abdullah
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (02): : 724 - 735
  • [8] Hybrid TDOA/AOA mobile user location for wideband CDMA-cellular systems
    Cong, L
    Zhuang, WH
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2002, 1 (03) : 439 - 447
  • [9] Dynamic Multidimensional Scaling Algorithm for 3-D Mobile Localization
    Cui, Wei
    Wu, Chengdong
    Meng, Wei
    Li, Bing
    Zhang, Yunzhou
    Xie, Lihua
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (12) : 2853 - 2865
  • [10] A survey of active and passive indoor localisation systems
    Deak, Gabriel
    Curran, Kevin
    Condell, Joan
    [J]. COMPUTER COMMUNICATIONS, 2012, 35 (16) : 1939 - 1954