A remark on regularity criterion for the dissipative quasi-geostrophic equations

被引:20
作者
Dong, Bo-Qing [1 ]
Chen, Zhi-Min
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Univ Southampton, Sch Engn Sci Ship Sci, Southampton SO17 1BJ, Hants, England
关键词
quasi-geostrophic equations; regularity criterion; logarithmic Sobolev inequalities;
D O I
10.1016/j.jmaa.2006.07.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns with a regularity criterion of solutions to the 2D dissipative quasi-geostrophic equations. Based on a logarithmic Sobolev inequality in Besov spaces, the absence of singularities of theta in [0, T] is derived for theta a solution on the interval [0, T) satisfying the condition del(perpendicular to)theta epsilon epsilon L-r (0, T; B-p(0), infinity) for 2/p + alpha/r = alpha, 4/alpha < p <infinity. This is an extension of earlier regularity results in the Serrin's type space L-r (0, T; L-p). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1212 / 1217
页数:6
相关论文
共 13 条
[1]   On the regularity conditions for the dissipative quasi-geostrophic equations [J].
Chae, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) :1649-1656
[2]   Global well-posedness in the super-critical dissipative quasi-geostrophic equations [J].
Chae, D ;
Lee, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (02) :297-311
[3]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[4]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[5]   Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space [J].
Ju, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (02) :365-376
[6]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[7]   The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations [J].
Kozono, H ;
Ogawa, T ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (02) :251-278
[8]   A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow [J].
Majda, AJ ;
Tabak, EG .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 98 (2-4) :515-522
[9]  
Pedlosky J., 1987, Geophysical Fluid Dynamics, DOI DOI 10.1007/978-1-4612-4650-3
[10]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187