Frequency chirped differential absorption LIDAR

被引:0
作者
Lytkine, A. [1 ]
Jager, W. [2 ]
Tulip, J. [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, 9107-116 St, Edmonton, AB T6G 2V4, Canada
[2] Univ Alberta, Chem Ctr, Edmonton, AB T6G 2V4, Canada
来源
LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING II | 2006年 / 6367卷
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
remote sensing; absorption spectroscopy; quantum cascade laser; frequency chirp; differential absorption;
D O I
10.1117/12.689312
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a novel concept design of a differential absorption LIDAR for open path trace gas sensing in the atmosphere. To perform a range-resolved gas sensing we propose to arrange a set of retroreflectors in the laser beam path to measure a differential absorption in adjacent sections. In validation experiments we used a pulsed DFB quantum cascade laser fabricated by Alpes Lasers. The laser was excited with 200-ns current pulses with a repetition rate of 10 kHz. The frequency chirp rate was found to increase from 7.7 to 1.0 cm(-1)/mu s as peak injection current was increased from 7.1, to 7.8 A. We utilized the frequency chirp at laser substrate temperature of 24.0 degrees C to scan the 967.0 - 968.5 cm(-1) spectral interval containing the absorption lines of CO2 and NH3. We detected similar to 0.25 ppmv of NH3 in nitrogen at atmospheric pressure using a double-pass gas cell with an effective absorption path of 2.4 m. Digital filtering of the spectra was shown to be effective in eliminating a high-frequency noise. To demonstrate range-resolved capabilities of the sensor we used two retroreflectors inserted into the laser beam. A differential absorption of CO2 at 967.7 cm(-1) was measured with the gas cell placed in one of the sections. Our experiments indicate that the frequency chirped LIDAR can be used for open path spectroscopy of NH3 over the ranges up to similar to 1 km with a spatial resolution of similar to 30 m and detection limit of similar to 20 ppbv per a 30-m section.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Evaluation of a Compact Broadband Differential Absorption Lidar for Routine Water Vapor Profiling in the Atmospheric Boundary Layer [J].
Newsom, R. K. ;
Turner, D. D. ;
Lehtinen, R. ;
Muenkel, C. ;
Kallio, J. ;
Roininen, R. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2020, 37 (01) :47-65
[32]   Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar [J].
Yang Juxin ;
Zhu Yadan ;
Wang Qin ;
Bu Lingbing ;
Liu Jiqiao ;
Chen Weibiao .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (09)
[33]   Advanced-technology-laser-aided air pollution monitoring in Athens: The Greek Differential Absorption LIDAR [J].
Kambezidis, HD ;
Efthimiopoulos, T ;
Ehret, G ;
Kotsopoulos, S ;
Zevgolis, D ;
Economou, G ;
Kosmidis, C ;
Adamopoulos, AD ;
Doukas, A ;
Gogou, PM ;
Karaboulas, D ;
Katsenos, J .
SECOND GR-I INTERNATIONAL CONFERENCE ON NEW LASER TECHNOLOGIES AND APPLICATIONS, 1998, 3423 :262-265
[34]   Preliminary Investigation of Vertical Measurement of Atmospheric Pressure Using Ground-Based Differential Absorption Lidar [J].
Hong Guanglie ;
Wang Qin ;
Wang Jianyu ;
Liang Xindong ;
Kong Wei ;
Li Hu .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (03)
[35]   Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor [J].
Obland, Michael D. ;
Repasky, Kevin S. ;
Nehrir, Amin R. ;
Carlsten, John L. ;
Shaw, Joseph A. .
JOURNAL OF APPLIED REMOTE SENSING, 2010, 4
[36]   Mobile mid-infrared differential absorption lidar for methane monitoring in the atmosphere: Calibration and first in situ tests [J].
Yakovlev, S. V. ;
Romanovskii, O. A. ;
Sadovnikov, S. A. ;
Tuzhilkin, D. A. ;
Nevzorov, A. A. ;
Kharchenko, O. V. ;
Kravtsova, N. S. ;
Zuev, V. E. .
RESULTS IN OPTICS, 2022, 8
[37]   An OSSE Study of the Impact of Micropulse Differential Absorption Lidar (MPD) Water Vapor Profiles on Convective Weather Forecasting [J].
Kay, Junkyung ;
Weckwerth, Tammy M. ;
Lee, Wen-Chau ;
Sun, Jenny ;
Romine, Glen .
MONTHLY WEATHER REVIEW, 2022, 150 (10) :2787-2811
[38]   Atmospheric CO2 Sensing with a Random Modulation Continuous Wave Integrated Path Differential Absorption Lidar [J].
Quatrevalet, Mathieu ;
Ai, Xiao ;
Perez-Serrano, Antonio ;
Adamiec, Pawel ;
Barbero, Juan ;
Fix, Andreas ;
Tijero, Jose Manuel G. ;
Esquivias, Ignacio ;
Rarity, John G. ;
Ehret, Gerhard .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (02) :157-167
[39]   Conceptual design of an acquisition, processing, and control system for a semi-autonomous, airborne, differential absorption lidar system [J].
Kelly, BT ;
Senft, DC ;
Dowling, JA ;
Higdon, NS ;
Fox, MJ ;
Cacciatore, VJ .
LASER RADAR TECHNOLOGY AND APPLICATIONS IV, 1999, 3707 :156-164
[40]   Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm [J].
Ma Xin ;
Gong Wei ;
Ma Ying-Ying ;
Fu Dong-Wei ;
Han Ge ;
Xiang Cheng-Zhi .
ACTA PHYSICA SINICA, 2015, 64 (15)