Annihilator-preserving maps, multipliers, and derivations

被引:40
作者
Li, Jiankui [2 ]
Pan, Zhidong [1 ]
机构
[1] Saginaw Valley State Univ, Dept Math, University Ctr, MI 48710 USA
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
关键词
Annihilator; Derivation; Directed graph; Multiplier; LOCAL DERIVATIONS; HOMOMORPHISMS;
D O I
10.1016/j.laa.2009.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a commutative subspace lattice L in a von Neumann algebra N and a bounded linear map f : N boolean AND alg L -> B(H), we show that if Af (B)C = 0 for all A, B, C is an element of N boolean AND alg L satisfying AB = BC = 0, then f is a generalized derivation. For a unital C*-algebra A, a unital Banach A-bimodule M, and a bounded linear map f : A -> M, we prove that if f (A) B = 0 for all A, B is an element of A with AB = 0. then f is a left multiplier; as a consequence, every bounded local derivation from a C*-algebra to a Banach A-bimodule is a derivation. We also show that every local derivation on a semisimple free semigroupoid algebra is a derivation and every local multiplier on a free semigroupoid algebra is a multiplier. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 23 条
[1]  
Alaminos J, 2007, P ROY SOC EDINB A, V137, P1
[2]   Local derivations on operator algebras [J].
Crist, RL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :76-92
[3]  
Davidson K.R., 1988, NEST ALGEBRAS
[4]   Nest representations of directed graph algebras [J].
Davidson, Kenneth R. ;
Katsoulis, Elias .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 :762-790
[5]   Invariant subspaces and hyper-reflexivity for free semigroup algebras [J].
Davidson, KR ;
Pitts, DR .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 78 :401-430
[6]   Derivations for a class of matrix function algebras [J].
Duncan, Benton L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :67-76
[7]   Local multiplications on algebras [J].
Hadwin, D ;
Kerr, JW .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 115 (03) :231-239
[8]   Local derivations and local automorphisms [J].
Hadwin, D ;
Li, JK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (02) :702-714
[9]  
HADWIN D, 1994, LINEAR MULTILINEAR A, V37, P295
[10]  
Hadwin D, 2008, J OPERAT THEOR, V60, P29