ZnS quantum dots impregnated-mesoporous TiO2 nanospheres for enhanced visible light induced photocatalytic application

被引:29
作者
Harish, S. [1 ]
Sabarinathan, M. [1 ]
Kristy, A. Periyanayaga [2 ]
Archana, J. [2 ]
Navaneethan, M. [1 ]
Ikeda, H. [1 ]
Hayakawa, Y. [1 ]
机构
[1] Shizuoka Univ, Res Inst Elect, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328011, Japan
[2] SRM Univ, Dept Phys & Nanotechnol, SRM Res Inst, Madras 603203, Tamil Nadu, India
来源
RSC ADVANCES | 2017年 / 7卷 / 42期
关键词
ELECTRONIC-STRUCTURE; METHYLENE-BLUE; RAMAN-SPECTRUM; NANOSTRUCTURES; NANOCOMPOSITES; PERFORMANCE; NANOPARTICLES; DEGRADATION; STABILITY; WATER;
D O I
10.1039/c7ra03061d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ZnS quantum dots were impregnated on the surface of TiO2 mesospheres by a soft template-assisted solvothermal approach. XRD and elemental analysis confirmed the presence of ZnS in the TiO2 nanostructures. Morphological analysis showed that the ZnS quantum dots were firmly immobilized on the TiO2 mesospheres, which improved electron and hole pair separation at the TiO2/ZnS interface. The photocatalytic activity of the mesoporous nanostructures was assessed by photodegradation of methylene blue (MB) as a model pollutant under visible light irradiation. Impregnation with ZnS quantum dots enhanced reaction activity remarkably compared with mesoporous TiO2. The maximum degradation efficiency was observed for 0.025 M of ZnS impregnated on TiO2. The MB-related absorption peak completely disappeared after 32 min of irradiation. Photo-charge scavenger analysis indicated that hydroxyl radicals played a pivotal role in the photodegradation mechanism. The mesoporous photocatalyst was stable and can be used repeatedly under visible irradiation.
引用
收藏
页码:26446 / 26457
页数:12
相关论文
共 61 条
  • [1] Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries
    Ali, Zahid
    Cha, Seung Nam
    Sohn, Jung Inn
    Shakir, Imran
    Yan, Changzeng
    Kim, Jong Min
    Kang, Dae Joon
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) : 17625 - 17629
  • [2] AMEEN S, 2013, ORIENT J CHEM, V29, P837
  • [3] Highly efficient dye-sensitized solar cell performance from template derived high surface area mesoporous TiO2 nanospheres
    Archana, J.
    Harish, S.
    Sabarinathan, M.
    Navaneethan, M.
    Ponnusamy, S.
    Muthamizhchelvan, C.
    Shimomura, M.
    Ikeda, H.
    Aswal, D. K.
    Hayakawa, Y.
    [J]. RSC ADVANCES, 2016, 6 (72): : 68092 - 68099
  • [4] Solvothermal growth of high surface area mesoporous anatase TiO2 nanospheres and investigation of dye-sensitized solar cell properties
    Archana, J.
    Navaneethan, M.
    Hayakawa, Y.
    [J]. JOURNAL OF POWER SOURCES, 2013, 242 : 803 - 810
  • [5] Solvothermal synthesis of TiO2 hollow nanospheres utilizing the Kirkendall effect and their photocatalytic activities
    Chen, Sifeng
    Wang, Huiqun
    Zhu, Lianjie
    Li, Jianfa
    Sun, Jingfeng
    [J]. APPLIED SURFACE SCIENCE, 2014, 321 : 86 - 93
  • [6] The synthesis of ZnO/SnO2 porous nanofibers for dye adsorption and degradation
    Chen, Xiang
    Zhang, Feng
    Wang, Qian
    Han, Xiao
    Li, Xin
    Liu, Jiuyu
    Lin, Huiming
    Qu, Fengyu
    [J]. DALTON TRANSACTIONS, 2015, 44 (07) : 3034 - 3042
  • [7] Choonyian H., 2016, NEW J CHEM, V40, P1124
  • [8] Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment
    Da Silva, Rafael O.
    Goncalves, Ricardo H.
    Stroppa, Daniel G.
    Ramirez, Antonio J.
    Leite, Edson R.
    [J]. NANOSCALE, 2011, 3 (04) : 1910 - 1916
  • [9] Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis
    de Richter, Renaud
    Ming, Tingzhen
    Davies, Philip
    Liu, Wei
    Caillol, Sylvavin
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 60 : 68 - 96
  • [10] SnO2 doped ZnO nanostructures for highly efficient photocatalyst
    Faisal, M.
    Ibrahim, Ahmed A.
    Harraz, Farid A.
    Bouzid, Houcine
    Al-Assiri, M. S.
    Ismail, Adel A.
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 397 : 19 - 25