Synergistic use of piezoelectric and shape memory alloy elements for vibration-based energy harvesting

被引:32
作者
Adeodato, Arthur [1 ]
Duarte, Brenno T. [1 ]
Monteiro, Luciana Loureiro S. [1 ]
Pacheco, Pedro Manuel C. L. [1 ]
Savi, Marcelo A. [2 ]
机构
[1] Ctr Fed Educ Tecnol Celso Suckow da Fonseca, CEFET RJ Dept Mech Engn, BR-20271110 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Ctr Nonlinear Mech, COPPE Dept Mech Engn, POB 68-503, BR-21941972 Rio De Janeiro, Brazil
关键词
Energy harvesting; Piezoelectric materials; Shape memory alloys; Experimental analysis; Numerical analysis;
D O I
10.1016/j.ijmecsci.2020.106206
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The efforts for clean and renewable energy have been encouraging a growing interest for vibration-based energy harvesting devices. Piezoelectric materials are remarkable elements to promote electro-mechanical coupling allowing the conversion of the mechanical vibration into electrical power through piezoelectric direct effect. Nevertheless, this promising application is associated with the key challenge to enhance and expand the energy harvesting capacity. In this regard, this work proposes the synergistic use of smart materials, combining piezoelectric and shape memory alloy (SMA) elements. Experimental and numerical analyses are performed showing the enhanced capabilities of the system due to the adaptability provided by shape memory alloys. A piezoelectric beam excited by an electrodynamics shaker is connected with a shape memory alloy element that allows to exploit its remarkable characteristics in order to change system properties with temperature variations through Joule's effect. Thermomechanical tests are performed for SMA characterization. Afterward, nonlinear dynamics of the energy harvesting system is investigated exploiting the SMA adaptive behavior. Results show that the synergistic use of smart materials is able to increase the device bandwidth, improving the system performance for energy harvesting purposes.
引用
收藏
页数:10
相关论文
共 57 条
[11]   A macroscopic description of shape memory alloy functional fatigue [J].
Dornelas, Vanderson M. ;
Oliveira, Sergio A. ;
Savi, Marcelo A. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 170
[12]   Methodology for the estimation of material damping as applied to superelastic shape memory alloy mini-springs [J].
dos Reis, R. P. B. ;
Silva, P. C. S. ;
Senko, R. ;
Silva, A. A. ;
de Araujo, C. J. .
MATERIALS & DESIGN, 2019, 161 :124-135
[13]   Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J].
duToit, NE ;
Wardle, BL ;
Kim, SG .
INTEGRATED FERROELECTRICS, 2005, 71 :121-160
[14]   Structural and functional fatigue of NiTi shape memory alloys [J].
Eggeler, G ;
Hornbogen, E ;
Yawny, A ;
Heckmann, A ;
Wagner, M .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 378 (1-2) :24-33
[15]   Nonlinear dynamics of a pseudoelastic shape memory alloy system-theory and experiment [J].
Enemark, S. ;
Savi, M. A. ;
Santos, I. F. .
SMART MATERIALS AND STRUCTURES, 2014, 23 (08)
[16]   Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs [J].
Enemark, Soren ;
Santos, Ilmar F. ;
Savi, Marcelo A. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (20) :2721-2743
[17]   Issues in mathematical modeling of piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (06)
[18]   An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (02)
[19]  
Erturk A., 2011, Piezoelectric Energy Harvesting, DOI DOI 10.1002/9781119991151.APP1
[20]   Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter [J].
Eugeni, Marco ;
Elahi, Hassan ;
Fune, Federico ;
Lampani, Luca ;
Mastroddi, Franco ;
Romano, Giovanni Paolo ;
Gaudenzi, Paolo .
AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 97