An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting

被引:4
|
作者
Corpas-Burgos, Francisca [1 ,2 ]
Martinez-Beneito, Miguel A. [2 ,3 ]
机构
[1] Fdn Fomento Invest Sanitaria & Biomed Comunitat V, Ave Cataluna 21, Valencia 46020, Spain
[2] CIBER Epidemiol & Salud Publ CIBERESP, Madrid 28029, Spain
[3] Univ Valencia, Dept Estadist & Invest Operat, C Dr Moliner 50, Valencia 46100, Spain
关键词
bayesian statistics; spatial statistics; spatio-temporal statistics; disease mapping; forecasting; mortality studies;
D O I
10.3390/math9040384
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the more evident uses of spatio-temporal disease mapping is forecasting the spatial distribution of diseases for the next few years following the end of the period of study. Spatio-temporal models rely on very different modeling tools (polynomial fit, splines, time series, etc.), which could show very different forecasting properties. In this paper, we introduce an enhancement of a previous autoregressive spatio-temporal model with particularly interesting forecasting properties, given its reliance on time series modeling. We include a common spatial component in that model and show how that component improves the previous model in several ways, its predictive capabilities being one of them. In this paper, we introduce and explore the theoretical properties of this model and compare them with those of the original autoregressive model. Moreover, we illustrate the benefits of this new model with the aid of a comprehensive study on 46 different mortality data sets in the Valencian Region (Spain) where the benefits of the new proposed model become evident.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] An autoregressive approach to spatio-temporal disease mapping
    Martinez-Beneito, M. A.
    Lopez-Quilez, A.
    Botella-Rocamora, P.
    STATISTICS IN MEDICINE, 2008, 27 (15) : 2874 - 2889
  • [2] An autoregressive spatio-temporal precipitation model
    Sigrist, Fabio
    Kuensch, Hans R.
    Stahel, Werner A.
    1ST CONFERENCE ON SPATIAL STATISTICS 2011 - MAPPING GLOBAL CHANGE, 2011, 3 : 2 - 7
  • [3] Spatio-temporal Bayesian model selection for disease mapping
    Carroll, Rachel
    Lawson, Andrew B.
    Faes, Christel
    Kirby, Russell S.
    Aregay, Mehreteab
    Watjou, Kevin
    ENVIRONMETRICS, 2016, 27 (08) : 466 - 478
  • [4] Spatio-temporal interaction with disease mapping
    Sun, DC
    Tsutakawa, RK
    Kim, H
    He, ZQ
    STATISTICS IN MEDICINE, 2000, 19 (15) : 2015 - 2035
  • [5] Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model
    Dambreville, Romain
    Blanc, Philippe
    Chanussot, Jocelyn
    Boldo, Didier
    RENEWABLE ENERGY, 2014, 72 : 291 - 300
  • [6] Spatio-temporal model for crop yield forecasting
    Saengseedam, Panudet
    Kantanantha, Nantachai
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (03) : 427 - 440
  • [7] Hierarchical spatio-temporal mapping of disease rates
    Waller, LA
    Carlin, BP
    Xia, H
    Gelfand, AE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 607 - 617
  • [8] Spatio-temporal disease mapping using INLA
    Schroedle, Birgit
    Held, Leonhard
    ENVIRONMETRICS, 2011, 22 (06) : 725 - 734
  • [9] Spatio-temporal modelling of disease mapping of rates
    Torabi, Mahmoud
    Rosychuk, Rhonda J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 698 - 715
  • [10] Matrix Autoregressive Spatio-Temporal Models
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1143 - 1155