Reversed Dickson polynomials over finite fields

被引:50
作者
Hou, Xiang-dong [3 ]
Mullen, Gary L. [2 ]
Sellers, James A. [2 ]
Yucas, Joseph L. [1 ]
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
Almost perfect nonlinear function; Dickson polynomial; Finite field; Reversed Dickson polynomial;
D O I
10.1016/j.ffa.2009.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reversed Dickson polynomials over finite fields are obtained from Dickson polynomials D-n(x, a) over finite fields by reversing the roles of the indeterminate x and the parameter a. We study reversed Dickson polynomials with emphasis on their permutational properties over finite fields. We show that reversed Dickson permutation polynomials (RDPPs) are closely related to almost perfect nonlinear (APN) functions. We find several families of nontrivial RDPPs over finite fields: some of them arise from known APN functions and others are new. Among RDPPs on F-q with q < 200, with only one exception, all belong to the RDPP families established in this paper. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:748 / 773
页数:26
相关论文
共 17 条
[1]   Two classes of quadratic APN binomials inequivalent to power functions [J].
Budaghyan, Lilya ;
Carlet, Claude ;
Leander, Gregor .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4218-4229
[2]   VALUE SETS OF DICKSON POLYNOMIALS OVER FINITE-FIELDS [J].
CHOU, WS ;
GOMEZCALDERON, J ;
MULLEN, GL .
JOURNAL OF NUMBER THEORY, 1988, 30 (03) :334-344
[3]   A CLASS OF EXCEPTIONAL POLYNOMIALS [J].
COHEN, SD ;
MATTHEWS, RW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 345 (02) :897-909
[4]  
Coulter RS, 1998, ACTA ARITH, V83, P241
[5]  
Dickson LE, 1896, ANN MATH, V11, P65, DOI [DOI 10.2307/1967224, DOI 10.2307/1967217]
[6]  
DICKSON LE, 1896, ANN MATH, V11, P161
[7]  
Dobbertin H, 2001, FINITE FIELDS AND APPLICATIONS, P113
[8]   Almost perfect nonlinear power functions on GF(2n):: The Welch case [J].
Dobbertin, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1271-1275
[9]  
Lidl R., 1997, Finite Fields
[10]  
Lidl R., 1993, Dickson Polynomials