Using CFW-Net Deep Learning Models for X-Ray Images to Detect COVID-19 Patients

被引:28
|
作者
Wang, Wei [1 ]
Liu, Hao [1 ]
Li, Ji [1 ]
Nie, Hongshan [2 ,3 ]
Wang, Xin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410076, Peoples R China
[3] Hunan BJI TECH Co Ltd, Changsha 410000, Peoples R China
关键词
COVID-19; Deep learning; CFW-Net; Convolutional neural network; Chest X ray images; DIAGNOSIS;
D O I
10.2991/ijcis.d.201123.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
COVID-19 is an infectious disease caused by severe acute respiratory syndrome (SARS)-CoV-2 virus. So far, more than 20 million people have been infected. With the rapid spread of COVID-19 in the world, most countries are facing the shortage of medical resources. As the most extensive detection technology at present, reverse transcription polymerase chain reaction (RT-PCR) is expensive, long-time (time consuming) and low sensitivity. These problems prompted us to propose a deep learning model to help radiologists and clinicians detect COVID-19 cases through chest X-ray. According to the characteristics of chest X-ray image, we designed the channel feature weight extraction (CFWE) module, and proposed a new convolutional neural network, CFW-Net, based on the CFWE module. Meanwhile, in order to improve recognition efficiency, the network adopts three classifiers for classification: one fully connected (FC) layers, global average pooling fully-connected (GFC) module and point convolution global average pooling (CGAP) module. The latter two methods have fewer parameters, less calculation and better real-time performance. In this paper, we have evaluated CFW-Net based on two open-source datasets. The experimental results show that the overall accuracy of our model CFW-Net56-GFC is 94.35% and the accuracy and sensitivity of COVID-19 are 100%. Compared with other methods, our method can detect COVID-19 disease more accurately. (C) 2021 The Authors. Published by Atlantis Press B.V.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 50 条
  • [41] Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Alsafari, Safa
    Yafoz, Ayman
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5255 - 5270
  • [42] COVID-19 detection in chest X-ray images using deep boosted hybrid learning
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Hassan, Mehdi
    Lee, Yeon Soo
    Alam, Jamshed
    Basit, Abdul
    Zubair, Saima
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [43] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Tarun Agrawal
    Prakash Choudhary
    Evolving Systems, 2022, 13 : 519 - 533
  • [44] Deep Learning System for COVID-19 Diagnosis Aid Using X-ray Pulmonary Images
    Civit-Masot, Javier
    Luna-Perejon, Francisco
    Dominguez Morales, Manuel
    Civit, Anton
    APPLIED SCIENCES-BASEL, 2020, 10 (13):
  • [45] COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning
    Zhang, Chang-Jiang
    Ruan, Lu-Ting
    Ji, Ling-Feng
    Feng, Li-Li
    Tang, Fu-Qin
    DIGITAL HEALTH, 2025, 11
  • [46] Classification of the ICU Admission for COVID-19 Patients with Transfer Learning Models Using Chest X-Ray Images
    Lin, Yun-Chi
    Fang, Yu-Hua Dean
    DIAGNOSTICS, 2025, 15 (07)
  • [47] Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
    Minaee, Shervin
    Kafieh, Rahele
    Sonka, Milan
    Yazdani, Shakib
    Soufi, Ghazaleh Jamalipour
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [48] Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
    Loey, Mohamed
    El-Sappagh, Shaker
    Mirjalili, Seyedali
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
  • [49] Deep Learning-based Detection of COVID-19 from Chest X-ray Images
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [50] New Optimized Deep Learning Application for COVID-19 Detection in Chest X-ray Images
    Karim, Ahmad Mozaffer
    Kaya, Hilal
    Alcan, Veysel
    Sen, Baha
    Hadimlioglu, Ismail Alihan
    SYMMETRY-BASEL, 2022, 14 (05):