Donoho-Stark's Uncertainty Principles in Real Clifford Algebras

被引:19
作者
El Haoui, Youssef [1 ]
Fahlaoui, Said [1 ]
机构
[1] Univ Moulay Ismail, Fac Sci, Dept Math & Comp Sci, Meknes 11201, Morocco
关键词
Clifford algebras; Clifford-Fourier transform; Uncertainty principle; Donoho-Stark's uncertainty principle; FOURIER-TRANSFORM;
D O I
10.1007/s00006-019-1015-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Clifford Fourier transform (CFT) has been shown to be a powerful tool in the Clifford analysis. In this work, several uncertainty inequalities are established in the real Clifford algebra Cl(p,q), including the Hausdorf-Young inequality, and three qualitative uncertainty principles of Donoho-Stark.
引用
收藏
页数:13
相关论文
共 12 条
[1]   The Clifford-Fourier transform [J].
Brackx, F ;
De Schepper, N ;
Sommen, F .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) :669-681
[2]   The Fourier Transform in Clifford Analysis [J].
Brackx, Fred ;
De Schepper, Nelle ;
Sommen, Frank .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 156, 2009, 156 :55-201
[3]   Pitt's inequality and the uncertainty principle associated with the quaternion Fourier transform [J].
Chen, Li-Ping ;
Kou, Kit Ian ;
Liu, Ming-Sheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) :681-700
[4]   UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY [J].
DONOHO, DL ;
STARK, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :906-931
[5]  
Hitzer E., 2013, SESSION GEOMETRIC AL, V2, P227
[6]  
Hitzer E, 2013, EL P 19 INT C APPL C, V2, P227
[7]   Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4) [J].
Hitzer, Eckhard M. S. ;
Mawardi, Bahn .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (3-4) :715-736
[8]   Uncertainty principle for the quaternion Fourier transform [J].
Lian, Pan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) :1258-1269
[9]  
Linares F., 2004, Introduction to Nonlinear Dispersive Equations
[10]   Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0 [J].
Mawardi, Bahri ;
Hitzer, Eckhard M. S. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) :41-61