Minimal models for noninvertible and not uniquely ergodic systems

被引:25
作者
Downarowicz, Tomasz [1 ]
机构
[1] Wroclaw Tech Univ, Inst Math, PL-50370 Wroclaw, Poland
关键词
D O I
10.1007/BF02773826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Y, S) be a (not necessarilly invertible) topological dynamical system on a zero-dimensional metric space Y without periodic points. Then there exists a minimal system (X, T) with the same siniplex of invariant measures as (Y, S). More precisely, there exists a Borel isomorphisin between full sets in Y and X such that the adjoint map on measures is a homeomorphism between the corresponding sets of invariant measures in the weak* topology. As an application we construct a minimal system carrying isomorphic copies of all nonatomic invariant measures.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 9 条
[1]  
Boyle M., 1983, ERGOD THEOR DYN, V3, P541, DOI [10.1017/S0143385700002133, DOI 10.1017/S0143385700002133]
[2]   Entropy structure [J].
Downarowicz, T .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :57-116
[3]   Fiber entropy and conditional variational principles in compact non-metrizable spaces [J].
Downarowicz, T ;
Serafin, J .
FUNDAMENTA MATHEMATICAE, 2002, 172 (03) :217-247
[4]  
Downarowicz T, 1998, STUD MATH, V130, P149
[5]   Topological realizations of families of ergodic automorphisms, multitowers and orbit equivalence [J].
Kornfeld, Isaac ;
Ormes, Nicholas .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 155 (1) :335-357
[6]   ZERO-DIMENSIONAL COVERS OF FINITE-DIMENSIONAL DYNAMICAL-SYSTEMS [J].
KULESZA, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :939-950
[7]  
Lindenstrauss E., 1999, PUBL MATH I HAUTES E, V89, P227
[8]   STRICTLY ERGODIC MODELS FOR NON-INVERTIBLE TRANSFORMATIONS [J].
ROSENTHAL, A .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (01) :57-72
[9]  
Weiss B., 1989, CONT MATH, V94, P321, DOI DOI 10.1090/CONM/094/1013000