Singular Value Decomposition and Entropy Dimension of Fractals

被引:4
作者
Weng, Xiaojing [1 ]
Perry, Altai [2 ]
Maroun, Michael [3 ]
Vuong, Luat T. [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[3] TeXDyn Ind Corp Labs, Austin, TX USA
来源
2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML) | 2022年
关键词
Singular value decomposition; entropy; fractal; diffractal; Kronecker product; ROBUSTNESS;
D O I
10.1109/ICICML57342.2022.10009680
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the singular value decomposition (SVD) and SVD entropy of Cantor fractals produced by the Kronecker product. Our primary results show that SVD entropy is a measure of image "complexity dimension" that is invariant under the number of Kronecker-product self-iterations i.e., fractal order. SVD entropy is therefore similar to the fractal Hausdorff complexity dimension but suitable for characterizing fractal wave phenomena. Our field-based normalization (Renyi entropy index = 1) illustrates the uncommon step-shaped and cluster-patterned distributions of the fractal singular values and their SVD entropy. As a modal measure of complexity, SVD entropy has uses for a variety of wireless communication, free-space optical, and remote sensing applications.
引用
收藏
页码:427 / 431
页数:5
相关论文
共 26 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]   DIFFRACTALS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (06) :781-797
[3]   Collision entropy and optimal uncertainty [J].
Bosyk, G. M. ;
Portesi, M. ;
Plastino, A. .
PHYSICAL REVIEW A, 2012, 85 (01)
[4]   KRONECKER PRODUCTS AND MATRIX CALCULUS IN SYSTEM THEORY [J].
BREWER, JW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1978, 25 (09) :772-781
[5]   Transmission eigenchannels in a disordered medium [J].
Choi, Wonjun ;
Mosk, Allard P. ;
Park, Q-Han ;
Choi, Wonshik .
PHYSICAL REVIEW B, 2011, 83 (13)
[6]  
Ghassemlooy Z, 2013, OPTICAL WIRELESS COMMUNICATIONS: SYSTEM AND CHANNEL MODELLING WITH MATLAB(R), P1
[7]   FRACTAL IMAGE-CODING - A REVIEW [J].
JACQUIN, AE .
PROCEEDINGS OF THE IEEE, 1993, 81 (10) :1451-1465
[8]  
Keeney R. L., 1969, MATH MAG, V42, P210, DOI [10.1080/0025570x.1969.11975963, DOI 10.1080/0025570X.1969.11975963]
[9]  
Korolenko P. V., 2021, IEEE T PATTERN ANAL, V85, P53, DOI [10.3103/s1062873821010160, DOI 10.3103/S1062873821010160]
[10]  
Mandelbrot B B., 1987, Encyclopedia Phys. Sci. Technol, V5, P579, DOI DOI 10.1016/B0-12-227410-5/00259-3