Expectation values in relativistic Coulomb problems

被引:16
作者
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
关键词
QUANTUM-THEORY; HYDROGEN-ATOM; HYPERVIRIAL THEOREMS; HYPERFINE-STRUCTURE; VIRIAL RELATIONS; DIRAC-EQUATION; ENERGY-LEVELS; LINES;
D O I
10.1088/0953-4075/42/18/185003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We evaluate the matrix elements < Or(p)>, where O = {1, beta, i alpha n beta} are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, in terms of generalized hypergeometric functions F-3(2) (1) for all suitable powers. Their connections with the Chebyshev and Hahn polynomials of a discrete variable are emphasized. As a result, we derive two sets of Pasternack-type matrix identities for these integrals, when p -> - p - 1 and p -> - p - 3, respectively. Some applications to the theory of hydrogenlike relativistic systems are reviewed.
引用
收藏
页数:8
相关论文
共 70 条
[1]   Dirac-Coulomb energy levels and expectation values [J].
Adkins, Gregory S. .
AMERICAN JOURNAL OF PHYSICS, 2008, 76 (06) :579-584
[2]  
Akhiezer A. I., 1965, Quantum Electrodynamics
[3]   Recursive evaluation of expectation values (r(k)) for arbitrary states of the relativistic one-electron atom [J].
Andrae, D .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1997, 30 (20) :4435-4451
[4]  
[Anonymous], 1968, QUANTUM MECH
[5]  
Bailey W.N., 1935, GEN HYPERGEOMETRIC S
[6]   NOTE ON FEYNMANN THEOREM [J].
BALASUBRAMANIAN, S .
AMERICAN JOURNAL OF PHYSICS, 1984, 52 (12) :1143-1144
[7]   A NOTE ON THE GENERALIZED HELLMANN-FEYNMAN THEOREM [J].
BALASUBRAMANIAN, S .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (12) :1204-1205
[8]  
Berestetskii VB., 1971, Relativistic Quantum Theory
[9]  
Bethe H., 2008, Quantum Mechanics of One and Two Electron Atoms
[10]  
Bethe H. A., 1957, Quantum Mechanics of Oneand Two-Electron Atoms