Substantial LIB Anode Performance of Graphitic Carbon Nanoflakes Derived from Biomass Green-Tea Waste

被引:38
作者
Sekar, Sankar [1 ,2 ]
Lee, Youngmin [1 ,2 ]
Kim, Deuk Young [1 ,2 ]
Lee, Sejoon [1 ,2 ]
机构
[1] Dongguk Univ Seoul, Dept Semicond Sci, Seoul 04620, South Korea
[2] Dongguk Univ Seoul, Quantum Funct Semicond Res Ctr, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
biomass; mesoporous graphitic carbon; anode; lithium-ion battery; HIERARCHICAL POROUS CARBON; LITHIUM-ION BATTERIES; ACTIVATED CARBONS; HARD CARBON; LOW-COST; STORAGE; NANOSHEETS; ELECTRODE; CAPACITY; FIBERS;
D O I
10.3390/nano9060871
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomass-derived carbonaceous constituents constitute fascinating green technology for electrochemical energy-storage devices. In light of this, interconnected mesoporous graphitic carbon nanoflakes were synthesized by utilizing waste green-tea powders through the sequential steps of air-assisted carbonization, followed by potassium hydroxide activation and water treatment. Green-tea waste-derived graphitic carbon displays an interconnected network of aggregated mesoporous nanoflakes. When using the mesoporous graphitic carbon nanoflakes as an anode material for the lithium-ion battery, an initial capacity of similar to 706 mAh/g and a reversible discharge capacity of similar to 400 mAh/g are achieved. Furthermore, the device sustains a large coulombic efficiency up to 96% during 100 operation cycles under the applied current density of 0.1 A/g. These findings depict that the bio-generated mesoporous graphitic carbon nanoflakes could be effectively utilized as a high-quality anode material in lithium-ion battery devices.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Decarbonization of fossil fuels as a strategy to control global warming [J].
Abbasi, Tasneem ;
Abbasi, S. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :1828-1834
[2]   A Review: Fundamental Aspects of Silicate Mesoporous Materials [J].
ALOthman, Zeid A. .
MATERIALS, 2012, 5 (12) :2874-2902
[3]   Improving the Performance of Biomass-Derived Carbons in Li-Ion Batteries by Controlling the Lithium Insertion Process [J].
Arrebola, J. C. ;
Caballero, A. ;
Hernan, L. ;
Morales, J. ;
Olivares-Martin, M. ;
Gomez-Serrano, V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A791-A797
[4]   Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops [J].
Bazan, A. ;
Nowicki, P. ;
Polrolniczak, P. ;
Pietrzak, R. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 125 (03) :1199-1204
[5]   Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications [J].
Benzigar, Mercy R. ;
Talapaneni, Siddulu Naidu ;
Joseph, Stalin ;
Ramadass, Kavitha ;
Singh, Gurwinder ;
Scaranto, Jessica ;
Ravon, Ugo ;
Al-Bahily, Khalid ;
Vinu, Ajayan .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (08) :2680-2721
[6]   Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes [J].
Boukhalfa, Sofiane ;
Evanoff, Kara ;
Yushin, Gleb .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6872-6879
[7]   Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithium-Ion Batteries [J].
Caballero, Alvaro ;
Hernan, Lourdes ;
Morales, Julian .
CHEMSUSCHEM, 2011, 4 (05) :658-663
[8]   Activated carbons by a hydrothermal-assisted activated method for Li-ion batteries [J].
Chen, Minsheng ;
Yan, Dongliang ;
Zhang, Xiuyun ;
Yu, Zhaozhe ;
Zhu, Guisheng ;
Zhao, Yunyun ;
Lu, Shouqiang ;
Chen, Guangcun ;
Xu, Huarui ;
Yu, Aibing .
MATERIALS LETTERS, 2017, 196 :276-279
[9]   Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries [J].
Chen, Shuangqiang ;
Yeoh, Waikong ;
Liu, Qi ;
Wang, Guoxiu .
CARBON, 2012, 50 (12) :4557-4565
[10]   Enhanced Lithium Storage in Hierarchically Porous Carbon Derived from Waste Tea Leaves [J].
Choi, Changhoon ;
Seo, Seung-Deok ;
Kim, Byung-Kook ;
Kim, Dong-Wan .
SCIENTIFIC REPORTS, 2016, 6