More refined enumerations of alternating sign matrices

被引:12
作者
Fischer, Ilse [2 ,3 ]
Romik, Dan [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] Univ Klagenfurt, Inst Math, A-9020 Klagenfurt, Austria
[3] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
以色列科学基金会;
关键词
Alternating sign matrices; Monotone triangles; Enumeration; PLANE PARTITIONS;
D O I
10.1016/j.aim.2009.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a further refinement of the standard refined enumeration of alternating sign matrices (ASMs) according to their first two rows instead of just the first row, and more general "d-refined" enumerations of ASMs according to the first d rows. For the doubly-refined case of d = 2, we derive a system of linear equations satisfied by the doubly-refined enumeration numbers A(n,i,j) that enumerate such matrices. We give a conjectural explicit formula for A(n,i,j) and formulate several other conjectures about the sufficiency of the linear equations to determine the A(n,i,j)'s and about an extension of the linear equations to the general d-refined enumerations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2004 / 2035
页数:32
相关论文
共 14 条
[1]  
[Anonymous], 1996, New York J. Math.
[2]  
Bressoud D. M., 1999, PROOFS CONFIRMATIONS
[3]   Square ice, alternating sign matrices, and classical orthogonal polynomials [J].
Colomo, F ;
Pronko, AG .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :119-151
[4]   On two-point boundary correlations in the six-vertex model with domain wall boundary conditions [J].
Colomo, F ;
Pronko, AG .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :163-183
[5]  
COLOMO F, ARXIV08032697
[7]   The number of monotone triangles with prescribed bottom row [J].
Fischer, Ilse .
ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (02) :249-267
[8]  
Fonseca T, 2008, ELECTRON J COMB, V15
[9]  
KUPERBERG G, 1996, INT MATH RES NOTICES, P139
[10]   ALTERNATING SIGN MATRICES AND DESCENDING PLANE PARTITIONS [J].
MILLS, WH ;
ROBBINS, DP ;
RUMSEY, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (03) :340-359