Direct numerical simulation of turbulent flow and heat transfer over a heated cube placed in a matrix of unheated cubes

被引:7
|
作者
Khan, Basheer A. [1 ]
Saha, Arun K. [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Direct numerical simulation; Wall-mounted cube; Separation; Heat transfer; WALL-MOUNTED CUBE; BOUNDARY-LAYER; DISPERSION; ARRAY; PREDICTION; ISOTROPY; UNIFORM; RETURN; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2021.121052
中图分类号
O414.1 [热力学];
学科分类号
摘要
Direct numerical simulation (DNS) of turbulent flow and heat transfer has been performed over a heated wall-mounted cube positioned in a non-heated cube matrix by applying periodic boundary conditions in both streamwise (X) and spanwise (Y) directions. Three different channel heights namely, 3.4H, 2.0H, 1.5H corresponding to blockage ratio (BR) of 0.0735, 0.125 and 0.167 with H as the size of the cube are employed. The Reynolds number defined for the present simulation is kept at 3,854 (based on the cube height and average streamwise velocity) while the Prandtl number is chosen to be 0.712. A second-order spatial and temporal discretization has been used to solve the Navier-Stokes and energy equations. The flow structures and the associated heat transfer have been compared and discussed at different BRs based on the results of instantaneous snapshots and statistical quantities of flow variables. The turbulent states for each BR has been compared using an anisotropic invariant map in the horseshoe vortex regime, top surface regime and in the wake regime. The total heat flux and turbulent heat flux quantities are compared near the cube's surface to determine the contribution of both heat transfer by the thermal gradients, and due to the fluctuation induced heat flux. The overall Nusselt number is found to increase significantly with an increase in BR from 0.0735 to 0.125. However, at BR = 0.167, no considerable augmentation in heat transfer has been observed as compared to BR = 0.125. On the other hand, the friction factor increases monotonically but significantly with BR. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Direct numerical simulation of turbulent heat transfer in a square duct
    Piller, M
    Nobile, E
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2002, 12 (06) : 658 - 686
  • [22] Direct Numerical Simulation of Turbulent Flow Inside a Differentially Heated Composite Cavity
    Martinez, Javier
    Merzari, Elia
    Acton, Michael
    Baglietto, Emilio
    NUCLEAR TECHNOLOGY, 2020, 206 (02) : 266 - 282
  • [23] Direct numerical simulation of wall-to-liquid heat transfer in turbulent particle-laden channel flow
    Chang, Qi
    Ge, Wei
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 157
  • [24] Numerical development of heat transfer correlation in asymmetrically heated turbulent channel flow
    David, Martin
    Toutant, Adrien
    Bataille, Francoise
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 164
  • [25] Direct numerical simulation of turbulent concentric annular pipe flow - Part 2: Heat transfer
    Chung, SY
    Sung, HJ
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2003, 24 (03) : 399 - 411
  • [26] Direct Numerical Simulation of particulate flow with heat transfer
    Dan, C.
    Wachs, A.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2010, 31 (06) : 1050 - 1057
  • [27] Large Eddy Simulation of Turbulent Heat Transfer in Curved-Pipe Flow
    Kang, Changwoo
    Yang, Kyung-Soo
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2016, 138 (01):
  • [28] Direct numerical simulation of laminar–turbulent flow over a flat plate at hypersonic flow speeds
    I. V. Egorov
    A. V. Novikov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 1048 - 1064
  • [29] Direct numerical simulation of turbulent heat transfer in a T-junction
    Georgiou, M.
    Papalexandris, M., V
    JOURNAL OF FLUID MECHANICS, 2018, 845 : 581 - 614
  • [30] Direct numerical simulation of flow and heat transfer of supercritical water with different heat fluxes
    Bai, Yifan
    Wang, Han
    Liu, Minyun
    Wu, Jinghui
    Lyu, Haicai
    Huang, Yanping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 221