Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization

被引:84
作者
Santana, Hugo [1 ,2 ]
Cereijo, Carolina R. [1 ,3 ]
Teles, Valerya C. [1 ,3 ]
Nascimento, Rodrigo C. [1 ,3 ]
Fernandes, Maiara S. [1 ,3 ]
Brunale, Patricia [1 ]
Campanha, Raquel C. [1 ]
Soares, Itnia P. [1 ]
Silva, Flavia C. P. [1 ]
Sabaini, Priscila S. [1 ]
Siqueira, Felix G. [1 ,2 ,3 ]
Brasil, Bruno S. A. F. [1 ,3 ]
机构
[1] Embrapa Agroenergy, Brasilia, DF, Brazil
[2] Univ Fed Bahia, Vitoria Da Conquista, BA, Brazil
[3] Univ Fed Tocantins, Gurupi, TO, Brazil
关键词
Chlamydomonas; Micractinium; Biorefinery; Photobioreactor; Wastewater; CO2; WASTE-WATER; CAROTENOID PRODUCTION; BIODIESEL PRODUCTION; SPIRULINA-MAXIMA; BIOMASS; BIOFUELS; FERMENTATION; ETHANOL; PROTEIN; LIGHT;
D O I
10.1016/j.biortech.2016.12.075
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Sugarcane ethanol is produced at large scale generating wastes that could be used for microalgae biomass production in a biorefinery strategy. In this study, forty microalgae strains were screened for growth in sugarcane vinasse at different concentrations. Two microalgae strains, Micractinium sp. Embrapa| LBA32 and C. biconvexa Embrapa| LBA40, presented vigorous growth in a light-dependent manner even in undiluted vinasse under non-axenic conditions. Microalgae strains presented higher biomass productivity in vinasse-based media compared to standard Bold's Basal Medium in cultures performed using 15 L airlift flat plate photobioreactors. Chemical composition analyses showed that proteins and carbohydrates comprise the major fractions of algal biomass. Glucose was the main monosaccharide detected, ranging from 46% to 76% of the total carbohydrates content according to the strain and culture media used. This research highlights the potential of using residues derived from ethanol plants to cultivate microalgae for the production of energy and bioproducts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 46 条
[1]   Functional identification of the glycerol transport activity of Chlamydomonas reinhardtii CrMIP1 [J].
Anderca, MI ;
Suga, S ;
Furuichi, T ;
Shimogawara, K ;
Maeshima, M ;
Muto, S .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (09) :1313-1319
[2]  
[Anonymous], 2013, ASTM D 5865-13
[3]  
[Anonymous], 12620 NBR
[4]  
[Anonymous], NEW BIOTECHNOL
[5]  
[Anonymous], 282 THERM FISH SCI
[6]  
[Anonymous], J MICROBIOL BIOTECHN
[7]  
[Anonymous], 2012, Standard Methods for the Examination of Water and Wastewater, V22
[8]  
AOAC M., 1990, OFFICIAL METHODS ANA, V1, P69
[9]   Production of biomass by Spirulina maxima using sugar beet vinasse in growth media [J].
Barrocal, Victor M. ;
Teresa Garcia-Cubero, M. ;
Gonzalez-Benito, Gerardo ;
Coca, Monica .
NEW BIOTECHNOLOGY, 2010, 27 (06) :851-856
[10]   Microalgae for Biofuels and Animal Feeds [J].
Benemann, John .
ENERGIES, 2013, 6 (11) :5869-5886