Quantum walks on simplicial complexes

被引:9
作者
Matsue, Kaname [1 ]
Ogurisu, Osamu [2 ]
Segawa, Etsuo [3 ]
机构
[1] Inst Stat Math, Tachikawa, Tokyo 1908562, Japan
[2] Kanazawa Univ, Div Math & Phys Sci, Kanazawa, Ishikawa 9201192, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Quantum walk; Simplicial complexes; Tethered and movable quantum walks; NETWORK; GOOGLE;
D O I
10.1007/s11128-016-1247-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a new type of quantum walks on simplicial complexes as a natural extension of the well-known Szegedy walk on graphs. One can numerically observe that our proposing quantum walks possess linear spreading and localization as in the case of the Grover walk on lattices. Moreover, our numerical simulation suggests that localization of our quantum walks reflects not only topological but also geometric structures. On the other hand, our proposing quantum walk contains an intrinsic problem concerning exhibition of non-trivial behavior, which is not seen in typical quantum walks such as Grover walks on graphs.
引用
收藏
页码:1865 / 1896
页数:32
相关论文
共 28 条
  • [1] Spatial quantum search in a triangular network
    Abal, G.
    Donangelo, R.
    Forets, M.
    Portugal, R.
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2012, 22 (03) : 521 - 531
  • [2] Quantum walk algorithm for element distinctness
    Ambainis, Andris
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 210 - 239
  • [3] Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
  • [4] QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS
    Ambainis, Andris
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) : 507 - 518
  • [5] [Anonymous], 1988, PROBABILITY MATH STA
  • [6] gwViz: Visualisation of quantum walks on graphs
    Berry, Scott D.
    Bourke, Paul
    Wang, Jingbo B.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2295 - 2302
  • [7] Relationship between quantum walks and relativistic quantum mechanics
    Chandrashekar, C. M.
    Banerjee, Subhashish
    Srikanth, R.
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):
  • [8] Quantum Google in a Complex Network
    Davide Paparo, Giuseppe
    Mueller, Markus
    Comellas, Francesc
    Angel Martin-Delgado, Miguel
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [9] Feynman R., 2010, QUANTUM MECH PATH IN
  • [10] Higuchi Y., 2013, Yokohama Math. J, V59, P33