Regularized common spatial patterns with subject-to-subject transfer of EEG signals

被引:37
作者
Cheng, Minmin [1 ]
Lu, Zuhong [1 ]
Wang, Haixian [1 ]
机构
[1] Southeast Univ, Res Ctr Learning Sci, Key Lab Child Dev & Learning Sci Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain-computer interfaces (BCI); Common spatial pattern (CSP); Transfer learning; Electroencephalogram (EEG); Motor imagery (MI); BRAIN; CLASSIFICATION; COMMUNICATION;
D O I
10.1007/s11571-016-9417-x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the context of brain-computer interface (BCI) system, the common spatial patterns (CSP) method has been used to extract discriminative spatial filters for the classification of electroencephalogram (EEG) signals. However, the classification performance of CSP typically deteriorates when a few training samples are collected from a new BCI user. In this paper, we propose an approach that maintains or improves the recognition accuracy of the system with only a small size of training data set. The proposed approach is formulated by regularizing the classical CSP technique with the strategy of transfer learning. Specifically, we incorporate into the CSP analysis inter-subject information involving the same task, by minimizing the difference between the inter-subject features. Experimental results on two data sets from BCI competitions show that the proposed approach greatly improves the classification performance over that of the conventional CSP method; the transformed variant proved to be successful in almost every case, based on a small number of available training samples.
引用
收藏
页码:173 / 181
页数:9
相关论文
共 28 条
[1]  
[Anonymous], COMPUT INTELL NEUROS
[2]   The Berlin Brain-Computer Interface: Accurate Performance From First-Session in BCI-Naive Subjects [J].
Blankertz, Benjamin ;
Losch, Florian ;
Krauledat, Matthias ;
Dornhege, Guido ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (10) :2452-2462
[3]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[4]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[5]   Domain Transfer Learning for MCI Conversion Prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Zhang, Daoqiang ;
Munsell, Brent C. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) :1805-1817
[6]   Brain-computer inyerface in multimedia communication [J].
Ebrahimi, T ;
Vesin, JM ;
Garcia, G .
IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (01) :14-24
[7]   Beamforming in Noninvasive Brain-Computer Interfaces [J].
Grosse-Wentrup, Moritz ;
Liefhold, Christian ;
Gramann, Klaus ;
Buss, Martin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (04) :1209-1219
[8]   Subject transfer BCI based on Composite Local Temporal Correlation Common Spatial Pattern [J].
Hatamikia, Sepideh ;
Nasrabadi, Ali Motie .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 :1-11
[9]   Composite Common Spatial Pattern for Subject-to-Subject Transfer [J].
Kang, Hyohyeong ;
Nam, Yunjun ;
Choi, Seungjin .
IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (08) :683-686
[10]   Towards Zero Training for Brain-Computer Interfacing [J].
Krauledat, Matthias ;
Tangermann, Michael ;
Blankertz, Benjamin ;
Mueller, Klaus-Robert .
PLOS ONE, 2008, 3 (08)