Inductive classification of multipartite entanglement under stochastic local operations and classical communication

被引:61
|
作者
Lamata, L.
Leon, J.
Salgado, D.
Solano, E.
机构
[1] CSIC, Inst Matemat & Fis Fundamental, E-28006 Madrid, Spain
[2] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima 1761, Peru
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevA.74.052336
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an inductive procedure to classify N-partite entanglement under stochastic local operations and classical communication provided such a classification is known for N-1 qubits. The method is based upon the analysis of the coefficient matrix of the state in an arbitrary product basis. We illustrate this approach in detail with the well-known bipartite and tripartite systems, obtaining as a by-product a systematic criterion to establish the entanglement class of a given pure state without resourcing to any entanglement measure. The general case is proved by induction, allowing us to find an upper bound for the number of N-partite entanglement classes in terms of the number of entanglement classes for N-1 qubits.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multipartite entanglement under stochastic local operations and classical communication
    Miyake, A
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) : 65 - 77
  • [2] Inductive entanglement classification of four qubits under stochastic local operations and classical communication
    Lamata, L.
    Leon, J.
    Salgado, D.
    Solano, E.
    PHYSICAL REVIEW A, 2007, 75 (02):
  • [3] Comment on "Inductive entanglement classification of four qubits under stochastic local operations and classical communication"
    Ghahi, Masoud Gharahi
    Mancini, Stefano
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [4] Tripartite entanglement measure under local operations and classical communication
    Ge, Xiaozhen
    Liu, Lijun
    Cheng, Shuming
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [5] Strict entanglement monotonicity under local operations and classical communication
    Guo, Yu
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [6] Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix
    Wang, Shuhao
    Lu, Yao
    Gao, Ming
    Cui, Jianlian
    Li, Junlin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [7] Stochastic local operations and classical communication invariant and the residual entanglement for n qubits
    Li, Dafa
    Li, Xiangrong
    Huang, Hongtao
    Li, Xinxin
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [8] Algorithm for characterizing stochastic local operations and classical communication classes of multiparticle entanglement
    Kampermann, Hermann
    Guehne, Otfried
    Wilmott, Colin
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [9] Comment on "Stochastic local operations and classical communication invariant and the residual entanglement for n qubits"
    Zha, Xin-Wei
    Song, Hai-Yang
    Hu, Ming-Liang
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [10] Tensor Decompositions with Applications to Local Unitary and Stochastic Local Operations and Classical Communication Equivalence of Multipartite Pure States
    Department of Mathematics and Statistics, Auburn University, Auburn
    AL
    36849-531, United States
    Siam J. Appl. Algebr. Geom., 2025, 9 (01): : 33 - 57