Acyclic 5-choosability of planar graphs with neither 4-cycles nor chordal 6-cycles

被引:18
|
作者
Zhang, Haihui [1 ,2 ]
Xu, Baogang [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210097, Peoples R China
[2] Huaiyin Teachers Coll, Dept Math, Huaian 223300, Jiangsu, Peoples R China
关键词
Acyclically choosability; Planar graph; Cycle; COLORINGS;
D O I
10.1016/j.disc.2009.05.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper vertex coloring of a graph G = (V. E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L = {L(v) , v epsilon V}, there exists a proper acyclic coloring phi of G Such that phi(v) epsilon L(v) for all v epsilon V(G). If G is acyclically L-list colorable for any list assignment with |L(v)| >= k for all v epsilon V, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier. A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260]. and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs,J. Graph Theory 51 (4) (2006) 281-300]. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6087 / 6091
页数:5
相关论文
共 50 条
  • [1] Acyclic 4-choosability of planar graphs with neither 4-cycles nor triangular 6-cycles
    Borodin, O. V.
    Ivanova, A. O.
    Raspaud, A.
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2946 - 2950
  • [2] ACYCLIC 5-CHOOSABILITY OF PLANAR GRAPHS WITHOUT 4-CYCLES
    Borodin, O. V.
    Ivanova, A. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (03) : 411 - 425
  • [3] Acyclic 5-choosability of planar graphs without 4-cycles
    Borodin O.V.
    Ivanova A.O.
    Siberian Mathematical Journal, 2011, 52 (3) : 411 - 425
  • [4] Acyclic 5-choosability of planar graphs without 4-cycles
    Chen, Min
    Wang, Weifan
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6216 - 6225
  • [5] Acyclic 5-choosability of planar graphs without small cycles
    Montassier, Mickael
    Raspaud, Andre
    Wang, Weifan
    JOURNAL OF GRAPH THEORY, 2007, 54 (03) : 245 - 260
  • [6] Acyclic 6-choosability of Planar Graphs without 5-cycles and Adjacent 4-cycles
    Sun, Lin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (06) : 992 - 1004
  • [7] Edge-choosability of planar graphs without chordal 6-Cycles
    Ge, Liansheng
    Cai, Jiansheng
    UTILITAS MATHEMATICA, 2011, 86 : 289 - 296
  • [8] Acyclic 4-Choosability of Planar Graphs Without 4-Cycles
    Sun, Yingcai
    Chen, Min
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 161 - 178
  • [9] Acyclic 6-choosability of Planar Graphs without 5-cycles and Adjacent 4-cycles
    Lin Sun
    Acta Mathematica Sinica, English Series, 2021, 37 : 992 - 1004
  • [10] Acyclic 5-Choosability of Planar Graphs Without Adjacent Short Cycles
    Borodin, O. V.
    Ivanova, A. O.
    JOURNAL OF GRAPH THEORY, 2011, 68 (02) : 169 - 176