Periodic orbits, symbolic dynamics and topological entropy for the restricted 3-body problem

被引:22
作者
Arioli, G [1 ]
机构
[1] Dipartimento Sci & TA, I-15100 Alessandria, Italy
关键词
D O I
10.1007/s00220-002-0666-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns the restricted 3-body problem. By applying topological methods we give a computer assisted proof of the existence of some classes of periodic orbits, the existence of symbolic dynamics and we give a rigorous lower estimate for the topological entropy.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 20 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
[Anonymous], TOPOL METHODS NONLIN
[3]   Minimization properties of Hill's orbits and applications to some N-body problems [J].
Arioli, G ;
Gazzola, F ;
Terracini, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (05) :617-650
[4]   Symbolic dynamics for the Henon-Heiles Hamiltonian on the critical level [J].
Arioli, G ;
Zgliczynski, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (01) :173-202
[5]   Computer assisted proof of chaos in the Lorenz equations [J].
Galias, Z ;
Zgliczynski, P .
PHYSICA D, 1998, 115 (3-4) :165-188
[6]  
Guckenheimer J, 2013, APPL MATH SCI
[7]   Rigorous proof of chaotic behaviour in a dumbbell satellite model [J].
Kirchgraber, U ;
Manz, U ;
Stoffer, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :897-911
[8]  
Lohner R., 1992, COMPUTATION GUARANTE
[9]  
MEYER KR, 1991, INTRO HAMILTONIAN DY
[10]   Chaos in the Lorenz equations: A computer assisted proof. Part II: Details [J].
Mischaikow, K ;
Mrozek, M .
MATHEMATICS OF COMPUTATION, 1998, 67 (223) :1023-1046