Influence functions for penalized M-estimators

被引:19
作者
Avella-Medina, Marco [1 ,2 ]
机构
[1] Univ Geneva, GSEM, Blvd Pont Arve 40, CH-1211 Geneva, Switzerland
[2] Univ Geneva, Res Ctr Stat, Blvd Pont Arve 40, CH-1211 Geneva, Switzerland
关键词
distribution theory; implicit function theorem; lasso; regularization; robust statistics; ROBUST VARIABLE SELECTION; REGRESSION SHRINKAGE; ORACLE PROPERTIES; MODEL SELECTION; ADAPTIVE LASSO; LIKELIHOOD;
D O I
10.3150/16-BEJ841
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the local robustness properties of general nondifferentiable penalized M-estimators via the influence function. More precisely, we propose a framework that allows us to define rigorously the influence function as the limiting influence function of a sequence of approximating estimators. We show that it can be used to characterize the robustness properties of a wide range of sparse estimators and we derive its form for general penalized M-estimators including lasso and adaptive lasso type estimators. We prove that our influence function is equivalent to a derivative in the sense of distribution theory.
引用
收藏
页码:3178 / 3196
页数:19
相关论文
共 36 条
[1]  
[Anonymous], P 5 BERK S MATH STAT
[2]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[3]  
[Anonymous], 1981, Robust statistics
[4]  
[Anonymous], 1986, WILEY SERIES PROBABI
[5]  
[Anonymous], 2006, ROBUST STAT THEORY M, DOI [10.1002/0470010940, DOI 10.1002/0470010940]
[6]  
Avella-Medina M, 2015, ROBUST CONSIST UNPUB
[7]  
Avella-Medina M., 2016, INFLUENCE FUNCTION S, DOI [10.3150/16-BEJ841SUPP, DOI 10.3150/16-BEJ841SUPP]
[8]  
BEDNARSKI T, 1993, MONTE VERIT, P25
[9]  
Berge Claude, 1997, TOPOLOGICAL SPACES I
[10]  
Biihlmann P., 2011, SPRINGER SERIES STAT