Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth

被引:0
作者
Nastovjak, A. G. [1 ]
Shwartz, N. L. [1 ,2 ]
Emelyanov, E. A. [1 ]
Petrushkov, M. O. [1 ]
Vasev, A. V. [1 ]
Putyato, M. A. [1 ]
Preobrazhenskii, V. V. [1 ]
机构
[1] RAS, SB, Rzhanov Inst Semicond Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
基金
俄罗斯基础研究基金会;
关键词
nanowires; GaAs; crystallite; MBE; simulation; Monte Carlo;
D O I
10.1134/S1063782620140213
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
During the self-catalyzed GaAs nanowire growth formation of parasitic GaAs crystallites is observed. The reasons for crystallite formation are explained on the base of Monte Carlo simulation results. During simultaneous deposition of gallium and arsenic on the GaAs(111)B substrate coated by a silicon oxide film, liquid gallium droplets nucleate on the oxide surface. After nucleation, droplets enlarge in size with time and etch the oxide layer. Formation of GaAs crystal structures becomes possible only after the Ga droplet contacts underlying crystal substrate. It is shown that excessively high arsenic and gallium deposition rates lead to the crystallite formation at the initial growth stage. The GaAs crystallites collect part of the deposited gallium and arsenic decreasing their surface concentration, thereby, adjusting the growth conditions for the nanowire growth. Therefore, during the self-catalyzed GaAs nanowire growth the self-regulation of growth conditions takes place.
引用
收藏
页码:1850 / 1853
页数:4
相关论文
共 13 条
[1]   Analysis of incubation time preceding the Ga-assisted nucleation and growth of GaAs nanowires on Si(111) [J].
Bastiman, Faebian ;
Kuepers, Hanno ;
Somaschini, Claudio ;
Dubrovskii, Vladimir G. ;
Geelhaar, Lutz .
PHYSICAL REVIEW MATERIALS, 2019, 3 (07)
[2]   Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy [J].
Bastiman, Faebian ;
Kuepers, Hanno ;
Somaschini, Claudio ;
Geelhaar, Lutz .
NANOTECHNOLOGY, 2016, 27 (09)
[3]   Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires [J].
Dubrovskii, V. G. ;
Xu, T. ;
Alvarez, A. Diaz ;
Plissard, S. R. ;
Caroff, P. ;
Glas, F. ;
Grandidier, B. .
NANO LETTERS, 2015, 15 (08) :5580-5584
[4]   A Mask Based on a Si Epitaxial Layer for the Self-Catalytic Nanowire Growth on GaAs(111)B and GaAs(100) Substrates [J].
Emelyanov, E. A. ;
Nastovjak, A. G. ;
Petrushkov, M. O. ;
Esin, M. Yu. ;
Gavrilova, T. A. ;
Putyato, M. A. ;
Schwartz, N. L. ;
Shvets, V. A. ;
Vasev, A. V. ;
Semyagin, B. R. ;
Preobrazhenskii, V. V. .
TECHNICAL PHYSICS LETTERS, 2020, 46 (02) :161-164
[5]   Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared [J].
Karimi, Mohammad ;
Heurlin, Magnus ;
Limpert, Steven ;
Jain, Vishal ;
Zeng, Xulu ;
Geijselaers, Irene ;
Nowzari, Ali ;
Fu, Ying ;
Samuelson, Lars ;
Linke, Heiner ;
Borgstrom, Magnus T. ;
Pettersson, Hakan .
NANO LETTERS, 2018, 18 (01) :365-372
[6]  
Karpov A. N., 2014, Numerical Methods and Programming. Advanced Computing, V15, P388
[7]   Ga predeposition for the Ga-assisted growth of GaAs nanowire ensembles with low number density and homogeneous length [J].
Kuepers, Hanno ;
Bastiman, Faebian ;
Luna, Esperanza ;
Somaschini, Claudio ;
Geelhaar, Lutz .
JOURNAL OF CRYSTAL GROWTH, 2017, 459 :43-49
[8]   Impact of the Ga Droplet Wetting, Morphology, and Pinholes on the Orientation of GaAs Nanowires [J].
Matteini, Federico ;
Tutuncuoglu, Gozde ;
Mikulik, Dmitry ;
Vukajlovic-Plestina, Jelena ;
Potts, Heidi ;
Leran, Jean-Baptiste ;
Carter, W. Craig ;
Fontcuberta i Morral, Anna .
CRYSTAL GROWTH & DESIGN, 2016, 16 (10) :5781-5786
[9]   Wetting of Ga on SiOx and Its Impact on GaAs Nanowire Growth [J].
Matteini, Federico ;
Tuetuencueoglu, Goezde ;
Potts, Heidi ;
Jabeen, Fauzia ;
Fontcuberta i Morralt, Anna .
CRYSTAL GROWTH & DESIGN, 2015, 15 (07) :3105-3109
[10]   Arsenic Pathways in Self-Catalyzed Growth of GaAs Nanowires [J].
Ramdani, Mohammed Reda ;
Harmand, Jean Christophe ;
Glas, Frank ;
Patriarche, Gilles ;
Travers, Laurent .
CRYSTAL GROWTH & DESIGN, 2013, 13 (01) :91-96