Component-Based Gender Identification Using Local Binary Patterns

被引:1
作者
Osman, Salma M. [1 ]
Noor, Nahla [1 ]
Viriri, Serestina [2 ]
机构
[1] Sudan Univ Sci & Technol, Coll Comp Sci & Informat Technol, Khartoum, Sudan
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
来源
COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I | 2019年 / 11683卷
关键词
Face detection; Facial component; Feature extraction; LBP;
D O I
10.1007/978-3-030-28377-3_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a component-based gender identification model from facial images has been proposed. The paper enhances the gender identification by using individual facial components (forehead, eyes, nose, cheeks, mouth and chin). Group of frontal facial images are used to validate the proposed model, feature extraction technique Local Binary Patterns (LBP) is implemented, then KNN and SVM classification techniques are applied to accomplish the gender identification model. The results achieved in this research work show an improved accuracy rate when face components (eyes, nose, mouth) are used for gender identification instead of the whole facial image. These results indicate that there are some facial parts which are not necessary for facial image recognition related application like gender identification.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 20 条
  • [1] Abdullah B., 2009, 13 INT C AER SCI AV
  • [2] Alam M. S., 2016, THESIS
  • [3] [Anonymous], 2008, P 2008 INT C CONTENT, DOI DOI 10.1145/1386352.1386373
  • [4] [Anonymous], 2013, P IEEE INT C SIGN IM
  • [5] [Anonymous], 2009, ENCY DATABASE SYSTEM, DOI DOI 10.1007/978-0-387-39940-9_565
  • [6] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [7] Component-Based Representation in Automated Face Recognition
    Bonnen, Kathryn
    Klare, Brendan F.
    Jain, Anil K.
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (01) : 239 - 253
  • [8] Bradski Gary, 2008, Learning OpenCV: Computer Vision in C++ with the OpenCVLibrary
  • [9] A Few Useful Things to Know About Machine Learning
    Domingos, Pedro
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (10) : 78 - 87
  • [10] DU HB, 2014, SPIE SENSING TECHNOL, V9120