Spin-orbit-free topological insulators

被引:2
作者
Alexandradinata, A. [1 ]
Bernevig, B. Andrei [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
关键词
topological insulator; photonic crystal; cold atom; PHASE-TRANSITION; CRYSTALLINE INSULATOR; HALL; REALIZATION;
D O I
10.1088/0031-8949/2015/T164/014013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review a class of translational-invariant insulators without spin-orbit coupling, as may be realized in intrinsically spinless systems, e.g., photonic crystals and ultra-cold atoms. Some of these insulators have no time-reversal symmetry as well, i.e., the relevant symmetries are purely crystalline. Nevertheless, topological phases exist which are distinguished by their robust surface modes. To describe these phases, we introduce the notions of (a) a halved-mirror chirality: an integer invariant which characterizes half-mirror planes in the 3D Brillouin zone, and (b) a bent Chern number: the traditional Thouless-Kohmoto-Nightingale-Nijs invariant generalized to bent 2D manifolds. Like other well-known topological phases, their band topology is unveiled by the crystalline analog of Berry phases, i.e., parallel transport across certain non-contractible loops in the Brillouin zone. We also identify certain topological phases without any robust surface modes-they are uniquely distinguished by parallel transport along bent loops, whose shapes are determined by the symmetry group. Finally, we describe the Weyl semimetallic phase that intermediates two distinct, gapped phases.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry [J].
Alexandradinata, A. ;
Fang, Chen ;
Gilbert, Matthew J. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2014, 113 (11)
[2]   Wilson-loop characterization of inversion-symmetric topological insulators [J].
Alexandradinata, A. ;
Dai, Xi ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2014, 89 (15)
[3]  
Alexandradinata A, 2014, ARXIV14093236
[4]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[5]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[6]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[8]   Topological nodal semimetals [J].
Burkov, A. A. ;
Hook, M. D. ;
Balents, Leon .
PHYSICAL REVIEW B, 2011, 84 (23)
[9]   Geometric quantum computation [J].
Ekert, Artur ;
Ericsson, Marie ;
Hayden, Patrick ;
Inamori, Hitoshi ;
Jones, Jonathan A. ;
Oi, Daniel K.L. ;
Vedral, Vlatko .
2000, Taylor and Francis Ltd. (47) :14-15
[10]   Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry [J].
Fang, Chen ;
Gilbert, Matthew J. ;
Dai, Xi ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2012, 108 (26)