Stability analysis of discrete-time singularly perturbed systems

被引:24
作者
Kafri, WS
Abed, EH
机构
[1] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,SYST RES INST,COLLEGE PK,MD 20742
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1996年 / 43卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1109/81.538991
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stability results for discrete-time singularly perturbed systems are obtained under less severe assumptions than in previous work. Exact upper bounds on the singular perturbation parameter ensuring system stability are obtained in the course of the analysis.
引用
收藏
页码:848 / 850
页数:3
相关论文
共 15 条
[1]  
ABED EH, 1990, ROBUST CONTROL LINEA, V4, P197
[2]  
Barmish B.R., 1994, New Tools for Robustness of Linear Systems
[3]  
BLANKENSHIP G, 1981, IEEE T AUTOMAT CONTR, V26, P9111
[4]  
Graham A., 2018, KRONECKER PRODUCTS M
[5]   MULTIRATE DIGITAL-CONTROL DESIGN OF AN OPTIMAL REGULATOR VIA SINGULAR PERTURBATION-THEORY [J].
KANDO, H ;
IWAZUMI, T .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (06) :1555-1578
[6]   STABILIZING FEEDBACK CONTROLLERS FOR SINGULARLY PERTURBED DISCRETE-SYSTEMS [J].
KANDO, H ;
IWAZUMI, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1984, 14 (06) :903-911
[7]   SUBOPTIMAL CONTROL OF DISCRETE REGULATOR PROBLEMS VIA TIME-SCALE DECOMPOSITION [J].
KANDO, H ;
IWAZUMI, T .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 37 (06) :1323-1347
[8]  
Lancaster P, 1985, THEORY MATRICES
[9]   STABILIZATION BOUND OF DISCRETE 2-TIME-SCALE SYSTEMS [J].
LI, THS ;
LI, JH .
SYSTEMS & CONTROL LETTERS, 1992, 18 (06) :479-489
[10]  
Naidu D. S., 1985, SINGULAR PERTURBATIO